Simple random walk on long range percolation clusters I: heat kernel bounds

被引:22
|
作者
Crawford, Nicholas [1 ]
Sly, Allan [2 ]
机构
[1] Technion Israel Inst Technol, Dept Ind Engn, Haifa, Israel
[2] Microsoft Res, Theory Grp, Redmond, WA USA
关键词
DIAMETER; DENSITY;
D O I
10.1007/s00440-011-0383-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we derive upper bounds for the heat kernel of the simple random walk on the infinite cluster of a supercritical long range percolation process. For any d a parts per thousand yen 1 and for any exponent giving the rate of decay of the percolation process, we show that the return probability decays like up to logarithmic corrections, where t denotes the time the walk is run. Our methods also yield generalized bounds on the spectral gap of the dynamics and on the diameter of the largest component in a box. The bounds and accompanying understanding of the geometry of the cluster play a crucial role in the companion paper (Crawford and Sly in Simple randomwalk on long range percolation clusters II: scaling limit, 2010) where we establish the scaling limit of the random walk to be alpha-stable L,vy motion.
引用
收藏
页码:753 / 786
页数:34
相关论文
共 50 条