OPTIMAL SOBOLEV TRACE EMBEDDINGS

被引:21
|
作者
Cianchi, Andrea [1 ]
Pick, Lubos [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Piazza Ghiberti 27, I-50122 Florence, Italy
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Sobolev spaces; trace embeddings; optimal target; rearrangement-invariant spaces; Orlicz spaces; Lorentz spaces; supremum operators; WEAKLY DIFFERENTIABLE FUNCTIONS; CLASSICAL LORENTZ SPACES; INEQUALITIES; OPERATORS; REARRANGEMENTS; IMBEDDINGS;
D O I
10.1090/tran/6606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Optimal target spaces are exhibited in arbitrary-order Sobolev type embeddings for traces of n-dimensional functions on lower dimensional subspaces. Sobolev spaces built upon any rearrangement-invariant norm are allowed. A key step in our approach consists of showing that any trace embedding can be reduced to a one-dimensional inequality for a Hardy type operator depending only on n and on the dimension of the relevant subspace. This can be regarded as an analogue for trace embeddings of a well-known symmetrization principle for first-order Sobolev embeddings for compactly supported functions. The stability of the optimal target space under iterations of Sobolev trace embeddings is also established and is part of the proof of our reduction principle. As a consequence, we derive new trace embeddings, with improved (optimal) target spaces, for classical Sobolev, Lorentz-Sobolev and Orlicz-Sobolev spaces.
引用
收藏
页码:8349 / 8382
页数:34
相关论文
共 50 条
  • [31] Doubly optimal homogeneous trace Sobolev inequality in a solid torus
    Cotsiolis, Athanase
    Labropoulos, Nikos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 269 - 288
  • [32] Sobolev embeddings involving symmetry
    Wang, WZ
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (04): : 269 - 278
  • [33] Sobolev embeddings and distance functions
    Brasco, Lorenzo
    Prinari, Francesca
    Zagati, Anna Chiara
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (04) : 1365 - 1398
  • [34] COMPACTNESS OF EMBEDDINGS OF SOBOLEV SPACES
    DUC, DM
    DUNG, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 105 - 119
  • [35] Sobolev embeddings in infinite dimensions
    Haimeng Luo
    Xu Zhang
    Shiliang Zhao
    Science China Mathematics, 2023, 66 : 2157 - 2178
  • [36] THE MEASURE OF NONCOMPACTNESS OF SOBOLEV EMBEDDINGS
    YERZAKOVA, NA
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 19 (03) : 349 - 359
  • [37] Sobolev embeddings in infinite dimensions
    Luo, Haimeng
    Zhang, Xu
    Zhao, Shiliang
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (10) : 2157 - 2178
  • [38] Algebra and geometry of Sobolev embeddings
    Visintin, Augusto
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (01) : 249 - 267
  • [39] Sobolev embeddings with variable exponent
    Edmunds, DE
    Rákosník, J
    STUDIA MATHEMATICA, 2000, 143 (03) : 267 - 293
  • [40] Sobolev embeddings in infinite dimensions
    Haimeng Luo
    Xu Zhang
    Shiliang Zhao
    Science China(Mathematics), 2023, 66 (10) : 2157 - 2178