OPTIMAL SOBOLEV TRACE EMBEDDINGS

被引:21
|
作者
Cianchi, Andrea [1 ]
Pick, Lubos [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Piazza Ghiberti 27, I-50122 Florence, Italy
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Sobolev spaces; trace embeddings; optimal target; rearrangement-invariant spaces; Orlicz spaces; Lorentz spaces; supremum operators; WEAKLY DIFFERENTIABLE FUNCTIONS; CLASSICAL LORENTZ SPACES; INEQUALITIES; OPERATORS; REARRANGEMENTS; IMBEDDINGS;
D O I
10.1090/tran/6606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Optimal target spaces are exhibited in arbitrary-order Sobolev type embeddings for traces of n-dimensional functions on lower dimensional subspaces. Sobolev spaces built upon any rearrangement-invariant norm are allowed. A key step in our approach consists of showing that any trace embedding can be reduced to a one-dimensional inequality for a Hardy type operator depending only on n and on the dimension of the relevant subspace. This can be regarded as an analogue for trace embeddings of a well-known symmetrization principle for first-order Sobolev embeddings for compactly supported functions. The stability of the optimal target space under iterations of Sobolev trace embeddings is also established and is part of the proof of our reduction principle. As a consequence, we derive new trace embeddings, with improved (optimal) target spaces, for classical Sobolev, Lorentz-Sobolev and Orlicz-Sobolev spaces.
引用
收藏
页码:8349 / 8382
页数:34
相关论文
共 50 条
  • [1] Optimal Gaussian Sobolev embeddings
    Cianchi, Andrea
    Pick, Lubos
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (11) : 3588 - 3642
  • [2] Optimal Sobolev embeddings on Rn
    Vybiral, Jan
    PUBLICACIONS MATEMATIQUES, 2007, 51 (01) : 17 - 44
  • [3] Orlicz–Sobolev boundary trace embeddings
    Andrea Cianchi
    Mathematische Zeitschrift, 2010, 266 : 431 - 449
  • [4] Orlicz-Sobolev boundary trace embeddings
    Cianchi, Andrea
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 431 - 449
  • [5] Optimal Orlicz-Sobolev embeddings
    Cianchi, A
    REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (02) : 427 - 474
  • [6] Optimal Sobolev embeddings - old and new
    Pick, L
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 403 - 411
  • [7] Asymptotic Behavior of Sobolev Trace Embeddings in Expanding Domains
    Abreu, Emerson
    do O, Joao Marcos
    Medeiros, Everaldo
    ANALYSIS AND TOPOLOGY IN NONLINEAR DIFFERENTIAL EQUATIONS: A TRIBUTE TO BERNHARD RUF ON THE OCCASION OF HIS 60TH BIRTHDAY, 2014, 85 : 1 - 21
  • [8] OPTIMAL EMBEDDINGS OF GENERALIZED INHOMOGENEOUS SOBOLEV SPACES
    Ahmed, Irshaad
    Karadzhov, Georgi E.
    Reza, Ali
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (08): : 1061 - 1066
  • [9] OPTIMAL EMBEDDINGS OF GENERALIZED HOMOGENEOUS SOBOLEV SPACES
    Ahmed, Irshaad
    Karadzhov, Georgi Eremiev
    COLLOQUIUM MATHEMATICUM, 2011, 123 (01) : 1 - 20
  • [10] Interpolation orbits and optimal Sobolev's embeddings
    Gogatishvili, Amiran
    Ovchinnikov, Vladimir I.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (01) : 1 - 17