Direct observation of the skyrmion Hall effect

被引:0
|
作者
Jiang, Wanjun [1 ,2 ,3 ,4 ]
Zhang, Xichao [5 ]
Yu, Guoqiang [6 ]
Zhang, Wei [1 ,7 ]
Wang, Xiao [8 ]
Jungfleisch, M. Benjamin [1 ]
Pearson, John E. [1 ]
Cheng, Xuemei [8 ]
Heinonen, Olle [1 ,9 ]
Wang, Kang L. [6 ]
Zhou, Yan [5 ]
Hoffmann, Axel [1 ]
te Velthuis, Suzanne G. E. [1 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[5] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[6] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[7] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[8] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA
[9] Northwestern Univ, Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
CURRENT-DRIVEN DYNAMICS; MAGNETIC SKYRMIONS; DOMAIN-WALLS; NANOSTRUCTURES; BUBBLES; TORQUES; LATTICE; MOTION; FILMS;
D O I
10.1038/NPHYS3883
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultant skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. The experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 50 条
  • [41] OBSERVATION OF HALL EFFECT IN SUPERCONDUCTORS
    REED, WA
    FAWCETT, E
    KIM, YB
    PHYSICAL REVIEW LETTERS, 1965, 14 (19) : 790 - &
  • [42] Skyrmion Hall effect in a nanotube driven by a rotating magnetic field
    Xin, Mingzhu
    Liu, Yan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 536
  • [43] Suppression of the skyrmion Hall effect in synthetic ferrimagnets with gradient magnetization
    Bo, Lan
    Zhang, Xichao
    Mochizuki, Masahito
    Zhang, Xuefeng
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [44] Magnetic bilayer-skyrmions without skyrmion Hall effect
    Zhang, Xichao
    Zhou, Yan
    Ezawa, Motohiko
    NATURE COMMUNICATIONS, 2016, 7
  • [45] Anomalous Hall effect and skyrmion number in real and momentum spaces
    Onoda, M
    Tatara, G
    Nagaosa, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (10) : 2624 - 2627
  • [46] Skyrmion Hall effect with spatially modulated Dzyaloshinskii–Moriya interaction
    Liping Zhou
    Ren Qin
    Ya-Qing Zheng
    Yong Wang
    Frontiers of Physics, 2019, 14
  • [47] Channeling skyrmions: Suppressing the skyrmion Hall effect in ferrimagnetic nanostripes
    Silva, R. C.
    Silva, R. L.
    Moreira, J. C.
    Moura-Melo, W. A.
    Pereira, A. R.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (18)
  • [48] Current-Driven Skyrmion Dynamics and Drive-Dependent Skyrmion Hall Effect in an Ultrathin Film
    Juge, Romeo
    Je, Soong-Geun
    Chaves, Dayane de Souza
    Buda-Prejbeanu, Liliana D.
    Pena-Garcia, Jose
    Nath, Jayshankar
    Miron, Ioan Mihai
    Rana, Kumari Gaurav
    Aballe, Lucia
    Foerster, Michael
    Genuzio, Francesca
    Mentes, Tevfik Onur
    Locatelli, Andrea
    Maccherozzi, Francesco
    Dhesi, Sarnjeet S.
    Belmeguenai, Mohamed
    Roussigne, Yves
    Auffret, Stephane
    Pizzini, Stefania
    Gaudin, Gilles
    Vogel, Jan
    Boulle, Olivier
    PHYSICAL REVIEW APPLIED, 2019, 12 (04):
  • [49] Deriving the skyrmion Hall angle from skyrmion lattice dynamics
    Brearton, R.
    Turnbull, L. A.
    Verezhak, J. A. T.
    Balakrishnan, G.
    Hatton, P. D.
    van der Laan, G.
    Hesjedal, T.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [50] Thermal creep and the skyrmion Hall angle in driven skyrmion crystals
    Reichhardt, C.
    Reichhardt, C. J. O.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (07)