SNR Analysis of a Spaceborne Hyperspectral Imager

被引:0
|
作者
Yilmaz, Ozgur [1 ]
Selimoglu, Ozgur [1 ]
Turk, Fethi [1 ]
Kirik, M. Sancay [1 ]
机构
[1] TUBITAK Uzay Space Technol Res Inst, TR-06531 Odtu Ankara, Turkey
关键词
Hyperspectral imager; SNR;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Hyperspectral imagers as remote sensing devices are getting more popular. Taking the image in different narrow spectral bands, instead of a single wide spectral band, gives much more insight information about the scene. But since the spectral band decreases considerably, signal reaching the sensor also decreases. This brings a trade-off between spatial resolution and spectral resolution. A detailed SNR (Signal to Noise ratio) analysis is commonly required to decide spatial and spectral resolutions and additionally to decide some optical parameters such as optical aperture and optical transmission. In this paper, SNR analysis of a spaceborne hyperspectral imager is realized through a preliminary optical design. We mainly focused on the effect of optical transmission (tau(optics)) to the SNR.
引用
收藏
页码:601 / 606
页数:6
相关论文
共 50 条
  • [21] Hyperspectral fundus imager
    Truitt, PW
    Soliz, P
    Meigs, AD
    Otten, LJ
    IMAGING SPECTROMETRY VI, 2000, 4132 : 356 - 364
  • [22] Miniature MOEMS hyperspectral imager with versatile analysis tools
    Trops, Roberts
    Hakola, Anna-Maria
    Jaaskelainen, Severi
    Nasila, Antti
    Annala, Leevi
    Eskelinen, Matti A.
    Saari, Heikki
    Polonen, Ilkka
    Rissanen, Anna
    MOEMS AND MINIATURIZED SYSTEMS XVIII, 2019, 10931
  • [23] ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing
    Dekemper, Emmanuel
    Fussen, Didier
    Van Opstal, Bert
    Vanhamel, Jurgen
    Pieroux, Didier
    Vanhellemont, Filip
    Mateshvili, Nina
    Franssens, Ghislain
    Voloshinov, Vitaly
    Janssen, Christof
    Eladaloussi, Hadi
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XVIII, 2014, 9241
  • [24] Spaceborne hyperspectral imagery sharpened with spaceborne multispectral imagery
    Vrabel, J
    Eckstein, BA
    Mullen, CP
    Kunze, B
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 425 - 432
  • [25] Processing/analysis capabilities for data acquired with hyperspectral spaceborne sensors
    Staenz, K
    Schwarz, J
    Cheriyan, J
    ACTA ASTRONAUTICA, 1996, 39 (9-12) : 923 - 931
  • [26] Design and Analysis of Spaceborne Hyperspectral Imaging System for Coastal Studies
    Wu, Yin
    Wang, Yueming
    Zhang, Dong
    REMOTE SENSING, 2025, 17 (06)
  • [27] A Canadian spaceborne hyperspectral mission
    Jolly, GW
    Rowlands, N
    Staenz, K
    Hollinger, A
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 967 - 969
  • [28] AOTF Materials for Hyperspectral Imager
    Singh, N. B.
    Kahler, D.
    Knuteson, D. J.
    Gottlieb, M.
    Suhre, D.
    Berghmans, A.
    Wagner, B.
    McLaughlin, S.
    King, M.
    Hedrick, J.
    Hawkins, J. J.
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (09): : 31 - 33
  • [29] Miniaturization of a SWIR Hyperspectral Imager
    Warren, Christopher P.
    Pfister, William
    Even, Detlev
    Velasco, Arleen
    Yee, Selwyn
    Breitwieser, David
    Naungayan, Joseph
    AIRBORNE INTELLIGENCE, SURVEILLANCE, RECONNAISSANCE (ISR) SYSTEMS AND APPLICATIONS VIII, 2011, 8020
  • [30] Quantum ferroelectric hyperspectral imager
    Birnbach, Curtis
    Vincent, Robert K.
    IEEE Aerospace Applications Conference Proceedings, 1999, 3 : 391 - 399