HEAT TRANSFER IN AN OBLIQUE JET IMPINGEMENT CONFIGURATION WITH VARYING JET GEOMETRIES

被引:0
|
作者
Schueren, Simon [1 ]
Hoefler, Florian [1 ]
von Wolfersdorf, Jens [1 ]
Naik, Shailendra
机构
[1] Univ Stuttgart, Inst Aerosp Thermodynam ITLR, D-70569 Stuttgart, Germany
关键词
LIQUID-CRYSTAL; IMPINGING JETS; PRESSURE-DROP; ARRAYS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Experimental and numerical heat transfer results in a trapezoidal duct with two staggered rows of inclined impingement jets are presented. The influence of changes in the jet bore geometry on the wall heat transfer is examined. The goal of this project is to minimize the thermal load in an internal gas turbine blade channel and to provide sufficient cooling for local hot spots. The dimensionless pitch is varied between p/d(jet) = 3 - 6. For p/d(jet) = 3, cylindrical as well as conically narrowing bores with a cross section reduction of 25% and 50%, respectively, are investigated. The studies are conducted at 10,000 <= Re <= 75,000. Experimental results are obtained using a transient thermochromic liquid crystal technique. The numerical simulations are performed solving the RANS equations with FLUENT using the low-Re k-omega-SST turbulence model. The results show that for greater pitch, the decreasing interaction between the jets leads to diminished local wall heat transfer The area averaged Nusselt numbers decrease by up to 15 % for p/d(jet) = 4.5, and up to 30 % for p/d(jet) = 6, respectively, if compared to the baseline pitch of p/d(jet) = 3. The conical bore design accelerates the jets, thus increasing the area-averaged heat transfer for identical mass-flow by up to 15% and 30% for the moderately and strongly narrowing jets, respectively. A dependency of the displacement between the Nu maximum and the geometric stagnation point from the jet shear layer is shown.
引用
收藏
页码:1067 / 1077
页数:11
相关论文
共 50 条
  • [21] Heat transfer under a precessing jet:: effects of unsteady jet impingement
    Göppert, S
    Gürtler, T
    Mocikat, H
    Herwig, H
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (12-13) : 2795 - 2806
  • [22] Flow structure and heat transfer of impingement jet
    Oyakawa, K.
    Umeda, A.
    Islam, M. D.
    Saji, N.
    Matsuda, S.
    HEAT AND MASS TRANSFER, 2009, 46 (01) : 53 - 61
  • [23] Local jet impingement boiling heat transfer
    Wolf, DH
    Incropera, FP
    Viskanta, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1996, 39 (07) : 1395 - 1406
  • [24] Heat transfer of confined circular jet impingement
    Department of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
    Chinese Journal of Mechanics Series A (English Edition), 2001, 17 (01): : 29 - 38
  • [25] Jet impingement heat transfer within a hemisphere
    Erasmus, Derwalt J.
    Lubkoll, Matti
    von Backstrom, Theodor W.
    HEAT AND MASS TRANSFER, 2021, 57 (06) : 931 - 948
  • [26] Synthetic jet impingement heat/mass transfer
    Trávnîcek, Z.
    Marŝík, F.
    Hyhlík, T.
    Journal of Flow Visualization and Image Processing, 2006, 13 (01) : 67 - 76
  • [27] Jet impingement heat transfer on a circular cylinder
    Zuckerman, Neil
    Lior, Noam
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 1, 2005, 376-1 : 67 - 78
  • [28] Jet impingement heat transfer within a hemisphere
    Derwalt J. Erasmus
    Matti Lubkoll
    Theodor W. von Backström
    Heat and Mass Transfer, 2021, 57 : 931 - 948
  • [29] Pulsating jet impingement heat transfer enhancement
    Liewkongsataporn, W.
    Patterson, T.
    Ahrens, F.
    DRYING TECHNOLOGY, 2008, 26 (04) : 433 - 442
  • [30] Flow structure and heat transfer of impingement jet
    K. Oyakawa
    A. Umeda
    M. D. Islam
    N. Saji
    S. Matsuda
    Heat and Mass Transfer, 2009, 46 : 53 - 61