Wireless Network Intrusion Detection Based on Improved Convolutional Neural Network

被引:88
|
作者
Yang, Hongyu [1 ]
Wang, Fengyan [1 ]
机构
[1] Civil Aviat Univ China, Sch Comp Sci & Technol, Tianjin 300300, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Wireless network intrusion detection; security; convolutional neural network;
D O I
10.1109/ACCESS.2019.2917299
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The diversification of wireless network traffic attack characteristics has led to the problems what traditional intrusion detection technology with high false positive rate, low detection efficiency, and poor generalization ability. In order to enhance the security and improve the detection ability of malicious intrusion behavior in a wireless network, this paper proposes a wireless network intrusion detection method based on improved convolutional neural network (ICNN). First, the network traffic data is characterized and preprocessed, then modeled the network intrusion traffic data by ICNN. The low-level intrusion traffic data is abstractly represented as advanced features by CNN, which extracted autonomously the sample features, and optimizing network parameters by stochastic gradient descent algorithm to converge the model. Finally, we conducted a sample test to detect the intrusion behavior of the network. The simulation results show that the method proposed in our paper has higher detection accuracy and true positive rate together with a lower false positive rate. The test results on the test set KDDTest + in our paper show that compared with the traditional models, the detection accuracy is 8.82% and 0.51% higher than that of LeNet-5 and DBN, respectively, and the recall rate is 4.24% and 1.16% higher than that of LeNet-5 and RNN, respectively, while the false positive rate is lower than the other three types of models. It also has a big advantage compared to the IDABCNN and NIDMBCNN methods.
引用
收藏
页码:64366 / 64374
页数:9
相关论文
共 50 条
  • [11] An Improved Network Intrusion Detection Based on Deep Neural Network
    Zhang, Lin
    Li, Meng
    Wang, Xiaoming
    Huang, Yan
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRONIC MATERIALS, COMPUTERS AND MATERIALS ENGINEERING (AEMCME 2019), 2019, 563
  • [12] Applying Convolutional Neural Network for Network Intrusion Detection
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1222 - 1228
  • [13] A wireless intrusion detection method based on neural network
    Liu, Yan-heng
    Tian, Da-xin
    Wei, Da
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER SCIENCE AND TECHNOLOGY, 2006, : 207 - +
  • [14] Wireless Sensor Network for Community Intrusion Detection System Based on Improved Genetic Algorithm Neural Network
    Gao, Meijuan
    Tian, Jingwen
    2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS, PROCEEDINGS, 2009, : 199 - 202
  • [15] The Network Intrusion Detection Based on Reasoning and Guided Adaptive Convolutional Neural Network
    Wang, Tiezhu
    Qi, Lin
    Liu, Pengfei
    Gong, Zhiqiang
    Li, Liang
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 234 - 234
  • [16] An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced Network Traffic
    Zhang, Xiaoxuan
    Ran, Jing
    Mi, Jize
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 456 - 460
  • [17] Network intrusion detection models based on improved dynamic neural network
    Zhang, Guiling
    Sun, Jizhou
    Jisuanji Gongcheng/Computer Engineering, 2006, 32 (11): : 10 - 12
  • [18] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [19] Intrusion Detection Method Based on Improved Neural Network
    Tang Hai-he
    2018 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2018, : 151 - 154
  • [20] An Improved Intrusion Detection System Based on Neural Network
    Han, Xiao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 887 - 890