SisGExp: Rethinking Long-Tail Agronomic Experiments

被引:2
|
作者
Serra da Cruz, Sergio Manuel [1 ]
Pires do Nascimento, Jose Antonio [1 ]
机构
[1] UFRRJ Univ Fed Rural Rio de Janeiro, Seropedica, RJ, Brazil
关键词
Provenance; R scripts; Workflows; Precision agriculture;
D O I
10.1007/978-3-319-40593-3_24
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reproducibility is a major feature of Science. Even agronomic research of exemplary quality may have irreproducible empirical findings because of random or systematic error. This work presents SisGExp, a provenance-based approach that aid researchers to manage, share, and enact the computational scientific workflows that encapsulate legacy R scripts. SisGExp transparently captures provenance of R scripts and endows experiments reproducibility. SisGExp is non-intrusive, does not require users to change their working way, it wrap agronomic experiments as a scientific workflow system.
引用
收藏
页码:214 / 217
页数:4
相关论文
共 50 条
  • [41] Functional importance of long-tail mutations in breast cancer
    Qing, Tao
    Mohsen, Hussein
    Rozenblit, Mariya
    Marczyk, Michal
    Foldi, Julia
    Blenman, Kim
    Gunasekharan, Vignesh
    Pusztai, Lajos
    [J]. CANCER RESEARCH, 2021, 81 (04)
  • [42] Improving Long-Tail Item Recommendation with Graph Augmentation
    Luo, Sichun
    Ma, Chen
    Xiao, Yuanzhang
    Song, Linqi
    [J]. PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1707 - 1716
  • [43] STDP can produce long-tail weight distributions
    Gilson, Matthieu
    Fukai, Tomoki
    [J]. NEUROSCIENCE RESEARCH, 2010, 68 : E346 - E346
  • [44] Accounting for long-tail asbestos liabilities: Metaphor and meaning
    Moerman, Lee
    van der Laan, Sandra
    [J]. ACCOUNTING FORUM, 2011, 35 (01) : 11 - 18
  • [45] Long-tail Recognition via Compositional Knowledge Transfer
    Parisot, Sarah
    Esperanca, Pedro M.
    McDonagh, Steven
    Madarasz, Tamas J.
    Yang, Yongxin
    Li, Zhenguo
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6929 - 6938
  • [46] Long-tail Vocabulary Dictionary Extraction from the Web
    Chen, Zhe
    Cafarella, Michael
    Jagadish, H. V.
    [J]. PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), 2016, : 625 - 634
  • [47] Long-Tail Augmented Graph Contrastive Learning for Recommendation
    Zhao, Qian
    Wu, Zhengwei
    Zhang, Zhiqiang
    Zhou, Jun
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 387 - 403
  • [48] Integrating long-tail data: How far are we?
    Vanderbilt, Kristin
    Gries, Corinna
    [J]. ECOLOGICAL INFORMATICS, 2021, 64
  • [49] Long-tail longitudinal modeling of insurance company expenses
    Shi, Peng
    Frees, Edward W.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2010, 47 (03): : 303 - 314
  • [50] Memory Bank Augmented Long-tail Sequential Recommendation
    Hu, Yidan
    Liu, Yong
    Miao, Chunyan
    Miao, Yuan
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 791 - 801