Releasing Atmospheric Martian Dust in Sand Grain Impacts

被引:6
|
作者
Becker, T. [1 ]
Teiser, J. [1 ]
Jardiel, T. [2 ]
Peiteado, M. [2 ]
Munoz, O. [3 ]
Martikainen, J. [3 ]
Gomez Martin, J. C. [3 ]
Wurm, G. [1 ]
机构
[1] Univ Duisburg Essen, Fac Phys, Lotharstr 1, D-47057 Duisburg, Germany
[2] Inst Ceram & Vidrio, C Kelsen 5,Campus Cantoblanco, E-28049 Madrid, Spain
[3] CSIC, Inst Astrofis Andalucia, Glorieta Astron S-N, E-18008 Granada, Spain
来源
PLANETARY SCIENCE JOURNAL | 2022年 / 3卷 / 08期
基金
欧盟地平线“2020”;
关键词
WIND EROSION; SALTATION THRESHOLD; MARS; SIZE; CLIMATE; SPEEDS; FORCE; MODEL; EARTH;
D O I
10.3847/PSJ/ac8477
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Emission of dust up to a few microns in size by impacts of sand grains during saltation is thought to be one source of dust within the Martian atmosphere. To study this dust fraction, we carried out laboratory impact experiments. Small numbers of particles of about 200 mu m in diameter impacted a simulated Martian soil (bimodal Mars Global Simulant). Impacts occurred at angles of similar to 18 degrees in vacuum with an impact speed of similar to 1 m s(-1). Ejected dust was captured on adjacent microscope slides and the emitted particle size distribution (PSD) was found to be related to the soil PSD. We find that the ejection of clay-sized dust gets increasingly harder the smaller these grains are. However, in spite of strong cohesive forces, individual impacts emit dust of 1 mu m and less, i.e., dust in the size range that can be suspended in the Martian atmosphere. More generally, the probability of ejecting dust of a given size can be characterized by a power law in the size range between 0.5 and 5 mu m (diameter).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Gravity Waves in Different Atmospheric Layers During Martian Dust Storms
    Wu, Zhaopeng
    Li, Jing
    Li, Tao
    Cui, Jun
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (04)
  • [22] Effect of dust storms on the D region of the Martian ionosphere: Atmospheric electricity
    Haider, S. A.
    Sheel, V.
    Smith, M. D.
    Maguire, W. C.
    Molina-Cuberos, G. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
  • [23] Optimization of a low altitude tethered probe for Martian atmospheric dust collection
    Pasca, M
    Lorenzini, EC
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1996, 44 (02): : 191 - 205
  • [24] Earth and Martian Sand and Dust Storms: A Comprehensive Review of Attenuation Modelling and Measurements
    Noreen, Shama
    Giannetti, Filippo
    Lottici, Vincenzo
    IEEE ACCESS, 2024, 12 : 878 - 922
  • [25] Mineral alteration induced by sand transport: A source for the reddish color of martian dust
    Merrison, J. P.
    Gunnlaugsson, H. P.
    Jensen, S. Knak
    Nornberg, P.
    ICARUS, 2010, 205 (02) : 716 - 718
  • [26] Grain size ratio may be crucial for the fluid initiation of martian sand grains
    Fu, Lin-Tao
    ICARUS, 2021, 358
  • [27] Simulated Atmospheric Response to Large-Scale Dust Forcing and Implications for Martian Dust Storm Growth
    Wang, Huiqun
    Toigo, Anthony D.
    Richardson, Mark I.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2023, 128 (10)
  • [28] Quantitative analysis of the Martian atmospheric dust cycle: Transported mass, surface dust lifting and sedimentation rates
    Lopez-Cayuela, Maria Angeles
    Zorzano, Maria-Paz
    Guerrero-Rascado, Juan Luis
    Cordoba-Jabonero, Carmen
    ICARUS, 2024, 409
  • [29] Improved optical properties of the Martian atmospheric dust for radiative transfer calculations in the infrared
    Forget, F
    GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (07) : 1105 - 1108
  • [30] Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols
    Hamilton, VE
    McSween, HY
    Hapke, B
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2005, 110 (E12) : 1 - 11