Conjugate gradient type methods for the nondifferentiable convex minimization

被引:12
|
作者
Li, Qiong [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
Nondifferentiable convex minimization; Conjugate gradient type methods; Global convergence; NEWTON METHOD; NONSMOOTH; DESCENT; ALGORITHM;
D O I
10.1007/s11590-011-0437-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We proposed implementable conjugate gradient type methods for solving a possibly nondifferentiable convex minimization problem by converting the original objective function to a once continuously differentiable function by way of the Moreau-Yosida regularization. The proposed methods make use of approximate function and gradient values of the Moreau-Yosida regularization instead of the corresponding exact values. The global convergence is established under mild conditions.
引用
收藏
页码:533 / 545
页数:13
相关论文
共 50 条