Modal and non-modal stabilities of flow around a stack of plates

被引:1
|
作者
Theobald, R. [1 ]
Mao, Xuerui [1 ]
Jaworski, A. J. [2 ]
Berson, A. [1 ]
机构
[1] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[2] Univ Leeds, Fac Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Laminar wake; Flat plates; Stability; NAVIER-STOKES EQUATIONS; CYLINDER; GROWTH;
D O I
10.1016/j.euromechflu.2015.04.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Modal and non-modal stabilities of flow around a stack of flat plates are investigated by means of asymptotic stability and transient growth analyses respectively. It is observed that over the parameters considered, both the base flow and the stabilities vary as a function of ReW2/(W - 1)(2), i.e. the product of the Reynolds number and the square of the expansion ratio of the stack. The most unstable modes are found to be located downstream of the recirculation bubble while the global optimal initial perturbations (resulting in maximum energy growth over the entire domain) and the weighted optimal initial perturbations (resulting in maximum energy growth in the close downstream region of the stack) concentrate around the stack end owing to the Orr mechanism. In direct numerical simulations (DNS) of the base flow initially perturbed by the modes, it is noticed that the weighted optimal initial perturbation induces periodic vortex shedding downstream of the stack much faster than the most unstable mode. This observation suggests that the widely reported vortex shedding in flow around a stack of plates, e.g. in thermoacoustic devices, is associated with perturbations around the stack end. (C) 2015 The Authors. Published by Elsevier Masson SAS.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [1] MODAL AND NON-MODAL BAROCLINIC WAVES
    FARRELL, B
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1984, 41 (04) : 668 - 673
  • [2] Modal and non-modal stability of particle-laden channel flow
    Klinkenberg, Joy
    de Lange, H. C.
    Brandt, Luca
    [J]. PHYSICS OF FLUIDS, 2011, 23 (06)
  • [3] Modal and non-modal stability analysis of electrohydrodynamic flow with and without cross-flow
    Zhang, Mengqi
    Martinelli, Fulvio
    Wu, Jian
    Schmid, Peter J.
    Quadrio, Maurizio
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 770 : 319 - 349
  • [4] Non-modal stability in sliding Couette flow
    Liu, R.
    Liu, Q. S.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 710 : 505 - 544
  • [5] Modal and non-modal stability of dusty-gas boundary layer flow
    S. A. Boronin
    A. N. Osiptsov
    [J]. Fluid Dynamics, 2014, 49 : 770 - 782
  • [6] Modal and non-modal linear stability of the plane Bingham-Poiseuille flow
    Nouar, C.
    Kabouya, N.
    Dusek, J.
    Mamou, M.
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 577 : 211 - 239
  • [7] Modal and non-modal stability of dusty-gas boundary layer flow
    Boronin, S. A.
    Osiptsov, A. N.
    [J]. FLUID DYNAMICS, 2014, 49 (06) : 770 - 782
  • [8] CONCEPTUALIZING NON-MODAL PARENTING
    Yanak, A. L.
    [J]. SOTSIOLOGICHESKIE ISSLEDOVANIYA, 2022, (04): : 56 - 67
  • [9] Non-Modal Instability of Core-Annular Flow
    Coppola, Gennaro
    Orazzo, Annagrazia
    de Luca, Luigi
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2012, 13 (06) : 405 - 415
  • [10] Tenseless/non-modal truthmakers for tensed/modal truths
    Dyke, Heather
    [J]. LOGIQUE ET ANALYSE, 2007, (199) : 269 - 287