Modal and non-modal linear stability of the plane Bingham-Poiseuille flow

被引:55
|
作者
Nouar, C.
Kabouya, N.
Dusek, J.
Mamou, M.
机构
[1] UHP, INPL, UMR 7563 CNRS, LEMTA, F-54504 Vandoeuvre Les Nancy, France
[2] ULP, UMR 7507 CNRS, IMFS Strasbourg, F-67000 Strasbourg, France
[3] Natl Res Council Canada, IAR, Ottawa, ON K1A 0R6, Canada
关键词
D O I
10.1017/S0022112006004514
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The receptivity problem of plane Bingham-Poiseuille flow with respect to weak perturbations is addressed. The relevance of this study is highlighted by the linear stability analysis results (spectra and pseudospectra). The first part of the present paper thus deals with the classical normal-mode approach in which the resulting eigenvalue problem is solved using the Chebychev collocation method. Within the range of parameters considered, the Poiseuille flow of Bingham fluid is found to be linearly stable. The second part investigates the most amplified perturbations using the non-modal approach. At a very low Bingham number (B<<1), the optimal disturbance consists of almost streamwise vortices, whereas at moderate or large B the optimal disturbance becomes oblique. The evolution of the obliqueness as function of B is determined. The linear analysis presented also indicates, as a first stage of a theoretical investigation, the principal challenges of a more complete nonlinear study.
引用
收藏
页码:211 / 239
页数:29
相关论文
共 50 条
  • [1] Non-modal stability in Hagen-Poiseuille flow of a Bingham fluid
    Liu, Rong
    Liu, Qiu Sheng
    [J]. PHYSICS OF FLUIDS, 2014, 26 (01)
  • [2] Modal and non-modal linear stability of Poiseuille flow through a channel with a porous substrate
    Ghosh, Souvik
    Loiseau, Jean-Christophe
    Breugem, Wim-Paul
    Brandt, Luca
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2019, 75 : 29 - 43
  • [3] Effect of Couette component on the stability of Poiseuille flow of a Bingham fluid-porous system: Modal and non-modal approaches
    Sengupta, Sourav
    De, Sirshendu
    [J]. PHYSICS OF FLUIDS, 2020, 32 (06)
  • [4] Stability of the Plane Bingham-Poiseuille Flow in an Inclined Channel
    Falsaperla, Paolo
    Giacobbe, Andrea
    Mulone, Giuseppe
    [J]. FLUIDS, 2020, 5 (03)
  • [5] Modal and non-modal stability for Hagen-Poiseuille flow with non-ideal fluid
    Zheng, Congren
    Chen, Yong
    Ding, Zijing
    [J]. PHYSICS OF FLUIDS, 2024, 36 (08)
  • [6] Non-modal instability of annular Poiseuille-Couette flow
    Daly, Conor A.
    Peake, N.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2015, 53 : 148 - 159
  • [7] Modal and non-modal stability of particle-laden channel flow
    Klinkenberg, Joy
    de Lange, H. C.
    Brandt, Luca
    [J]. PHYSICS OF FLUIDS, 2011, 23 (06)
  • [8] Non-modal stability in sliding Couette flow
    Liu, R.
    Liu, Q. S.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 710 : 505 - 544
  • [9] Modal and non-modal stability analysis of electrohydrodynamic flow with and without cross-flow
    Zhang, Mengqi
    Martinelli, Fulvio
    Wu, Jian
    Schmid, Peter J.
    Quadrio, Maurizio
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 770 : 319 - 349
  • [10] Modal and non-modal stability of dusty-gas boundary layer flow
    S. A. Boronin
    A. N. Osiptsov
    [J]. Fluid Dynamics, 2014, 49 : 770 - 782