Modelling lactation curves of dairy goats by fitting random regression models using Legendre polynomials or B-splines

被引:26
|
作者
Brito, L. F. [1 ]
Silva, F. G. [2 ]
Oliveira, H. R. [3 ,4 ]
Souza, N. O. [4 ]
Caetano, G. C. [4 ]
Costa, E. V. [4 ]
Menezes, G. R. O. [5 ]
Melo, A. L. P. [6 ]
Rodrigues, M. T. [4 ]
Torres, R. A. [4 ]
机构
[1] Univ Guelph, Dept Anim Biosci, Ctr Genet Improvement Livestock, Guelph, ON N1G 2W1, Canada
[2] Univ Fed Mato Grosso, Dept Zootecnia & Extensao Rural, BR-78060900 Cuiaba, MT, Brazil
[3] Univ Guelph, Dept Anim Biosci, Ctr Genet Improvement Livestock, Guelph, ON N1G 2W1, Canada
[4] Univ Fed Vicosa, Dept Zootecnia, BR-36570000 Vicosa, MG, Brazil
[5] Embrapa Gado Corte, BR-79106550 Campo Grande, MS, Brazil
[6] Univ Fed Rural Rio de Janeiro, Inst Zootecnia, BR-23890000 Seropedica, RJ, Brazil
关键词
genetic evaluation; Alpine; milk yield; test day; segmented polynomials; TEST-DAY MILK; RESTRICTED MAXIMUM-LIKELIHOOD; GENETIC-PARAMETERS; HOLSTEIN COWS; LINEAR SPLINES; PROTEIN YIELD; ALPINE GOATS; CATTLE; GROWTH; TRAITS;
D O I
10.1139/cjas-2017-0019
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
A total of 17 356 test-day milk yield (TDMY) records from 642 first lactations of Alpine goats were used to model variations in lactation curve using random regression models (RRM). Orthogonal Legendre polynomials and B-splines were evaluated to obtain adequate and parsimonious models for the estimation of genetic parameters. The analysis was performed using a single-trait RRM, including the additive genetic, permanent environmental, and residual effects. We estimated the mean trend of milk yield, and the additive genetic and permanent environmental covariance functions through random regression using different orders of orthogonal Legendre polynomial (three to six) and B-spline functions (linear, quadratic, and cubic, with three to six knots). This study further evaluated different number of classes of residual variances. The covariance components and the genetic parameters were estimated using the restricted maximum likelihood method. Heritability estimates presented similar trends for both functions. The RRM with a higher number of parameters better described the genetic variation of TDMY throughout the lactation. The most suitable RRM for genetic evaluation of TDMY of Alpine goats is a quadratic B-spline function with six knots, for the mean trend, curves of additive genetic and permanent environmental effects, and five classes of residual variance.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 28 条
  • [1] Modelling the lactation curve in Alpine x Beetal crossbred dairy goats using random regression models fitted with Legendre polynomial and B-spline functions
    Upadhyay, Amritanshu
    Alex, Rani
    Dige, Mahesh Shivanand
    Sahoo, Shweta
    Khan, Kashif Dawood
    Das, Pradyut
    Vohra, Vikas
    Gowane, Gopal Ramdasji
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2024, 141 (04) : 365 - 378
  • [2] Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats
    Silva, F. G.
    Torres, R. A.
    Brito, L. F.
    Euclydes, R. F.
    Melo, A. L. P.
    Souza, N. O.
    Ribeiro, J. I., Jr.
    Rodrigues, M. T.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2013, 12 (04) : 6502 - 6511
  • [3] Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle
    Pereira, R. J.
    Bignardi, A. B.
    El Faro, L.
    Verneque, R. S.
    Vercesi Filho, A. E.
    Albuquerque, L. G.
    [J]. JOURNAL OF DAIRY SCIENCE, 2013, 96 (01) : 565 - 574
  • [4] Fitting random regression models with Legendre polynomial and B-spline to model the lactation curve for Indian dairy goat of semi-arid tropic
    Dige, Mahesh Shivanand
    Rout, Pramod Kumar
    Singh, Manoj Kumar
    Bhusan, Saket
    Gowane, Gopal Ramdasji
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2022, 139 (04) : 414 - 422
  • [5] Random regression models using B-splines functions provide more accurate genomic breeding values for milk yield and lactation persistence in Murrah buffaloes
    Silva, Alessandra A.
    Brito, Luiz F.
    Silva, Delvan A.
    Lazaro, Sirlene F.
    Silveira, Karina R.
    Stefani, Gabriela
    Tonhati, Humberto
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (02) : 167 - 184
  • [6] Genomic-polygenic evaluations using random regression models with Legendre polynomials and linear splines for milk yield and fat percentage in the Thai multibreed dairy cattle population
    Jattawa, Danai
    Elzo, Mauricio A.
    Koonawootrittriron, Skorn
    Suwanasopee, Thanathip
    [J]. LIVESTOCK SCIENCE, 2021, 251
  • [7] Comparison of genomic-polygenic evaluations using random regression models with Legendre polynomials and splines for milk yield and fat percentage in Thai multibreed dairy cattle.
    Jattawa, D.
    Koonawootrittriron, S.
    Elzo, M. A.
    Suwanasopee, T.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2017, 95 : 79 - 80
  • [8] Random regression analyses using B-splines to model growth of Australian Angus cattle
    Karin Meyer
    [J]. Genetics Selection Evolution, 37 (6)
  • [9] Random regression analyses using B-splines to model growth of Australian Angus cattle
    Meyer, K
    [J]. GENETICS SELECTION EVOLUTION, 2005, 37 (05) : 473 - 500
  • [10] Comparison of random regression models with legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows
    Bohmanova, J.
    Miglior, F.
    Jamrozik, J.
    Misztal, I.
    Sullivan, P. G.
    [J]. JOURNAL OF DAIRY SCIENCE, 2008, 91 (09) : 3627 - 3638