Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle

被引:37
|
作者
Pereira, R. J. [1 ]
Bignardi, A. B. [1 ]
El Faro, L. [2 ]
Verneque, R. S. [3 ]
Vercesi Filho, A. E. [2 ]
Albuquerque, L. G. [1 ]
机构
[1] Univ Estadual Paulista, Fac Ciencias Agr & Vet, BR-14884900 Jaboticabal, SP, Brazil
[2] APTA, BR-14030670 Ribeirao Preto, SP, Brazil
[3] Embrapa Gado Leite, BR-36038330 Juiz De Fora, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
random regression model; covariance function; orthogonal polynomial; spline; HOLSTEIN-FRIESIAN CATTLE; GENETIC-PARAMETERS; COVARIANCE FUNCTIONS; COEFFICIENT MATRIX; PRODUCTION TRAITS; COWS; LACTATION; RECORDS; GROWTH; EIGENVECTORS;
D O I
10.3168/jds.2011-5051
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr x Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIG) and Bayesian information criterion (BIG), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects; indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records.
引用
收藏
页码:565 / 574
页数:10
相关论文
共 50 条
  • [1] Comparison of factor-analytic and reduced rank models for test-day milk yield in Gyr dairy cattle (Bos indicus)
    Pereira, R. J.
    Ayres, D. R.
    El Faro, L.
    Verneque, R. S.
    Vercesi Filho, A. E.
    Albuquerque, L. G.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2013, 12 (03): : 4036 - 4045
  • [2] Inbreeding depression in test-day milk yield of Gyr dairy cattle
    Pereira, Rodrigo Junqueira
    Santana Junior, Mario Luiz
    Ayres, Denise Rocha
    Bignardi, Annaiza Braga
    Vercesi Filho, Anibal Eugenio
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2016, 51 (06) : 751 - 758
  • [3] Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle
    Naserkheil, Masoumeh
    Miraie-Ashtiani, Seyed Reza
    Nejati-Javaremi, Ardeshir
    Son, Jihyun
    Lee, Deukhwan
    [J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2016, 29 (12): : 1682 - 1687
  • [4] Genetic parameters of somatic cell scores using random regression test-day models with Legendre polynomials in Tunisian dairy cattle
    Soumri, Nabil
    Jesus Carabano, Maria
    Gonzalez-Recio, Oscar
    Bedhiaf-Romdhani, Sonia
    [J]. LIVESTOCK SCIENCE, 2020, 241
  • [5] Bayesian analysis of random regression models using B-splines to model test-day milk yield of Holstein cattle in Brazil
    Bignardi, A. B.
    El Faro, L.
    Santana, M. L., Jr.
    Rosa, G. J. M.
    Cardoso, V. L.
    Machado, P. F.
    Albuquerque, L. G.
    [J]. LIVESTOCK SCIENCE, 2012, 150 (1-3) : 401 - 406
  • [6] Genomic-polygenic evaluations using random regression models with Legendre polynomials and linear splines for milk yield and fat percentage in the Thai multibreed dairy cattle population
    Jattawa, Danai
    Elzo, Mauricio A.
    Koonawootrittriron, Skorn
    Suwanasopee, Thanathip
    [J]. LIVESTOCK SCIENCE, 2021, 251
  • [7] Selection of locations of knots for linear splines in random regression test-day models
    Jamrozik, J.
    Bohmanova, J.
    Schaeffer, L. R.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2010, 127 (02) : 87 - 92
  • [8] Comparison of genomic-polygenic evaluations using random regression models with Legendre polynomials and splines for milk yield and fat percentage in Thai multibreed dairy cattle.
    Jattawa, D.
    Koonawootrittriron, S.
    Elzo, M. A.
    Suwanasopee, T.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2017, 95 : 79 - 80
  • [9] Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials
    Ben Zaabza, Hafedh
    Ben Gara, Abderrahmen
    Rekik, Boulbaba
    [J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2018, 31 (05): : 636 - 642
  • [10] Estimation of (co)variance components for the test-day milk yield in siboney cattle using a random regression model
    Gonzalez-Pena, Dianelys
    Guerra Iglesias, Danilo
    Luis Espinoza Villavicencio, Jose
    Palacios Espinosa, Alejandro
    de Luna de la Pena, Rafael
    [J]. INTERCIENCIA, 2007, 32 (10) : 702 - 706