Learning Sequential Contexts using Transformer for 3D Hand Pose Estimation

被引:1
|
作者
Khaleghi, Leyla [1 ,2 ]
Marshall, Joshua [1 ,2 ]
Etemad, Ali [1 ,2 ]
机构
[1] Queens Univ Kingston, Dept ECE, Kingston, ON, Canada
[2] Queens Univ Kingston, Ingenu Labs, Res Inst, Kingston, ON, Canada
关键词
D O I
10.1109/ICPR56361.2022.9955633
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D hand pose estimation (HPE) is the process of locating the joints of the hand in 3D from any visual input. HPE has recently received an increased amount of attention due to its key role in a variety of human-computer interaction applications. Recent HPE methods have demonstrated the advantages of employing videos or multi-view images, allowing for more robust HPE systems. Accordingly, in this study, we propose a new method to perform Sequential learning with Transformer for Hand Pose (SeTHPose) estimation. Our SeTHPose pipeline begins by extracting visual embeddings from individual hand images. We then use a transformer encoder to learn the sequential context along time or viewing angles and generate accurate 21) hand joint locations. Then, a graph convolutional neural network with a U-Net configuration is used to convert the 2D hand joint locations to 3D poses. Our experiments show that SeTHPose performs well on both hand sequence varieties, temporal and angular. Also, SeTHPose outperforms other methods in the lield to achieve new state-of-the-art results on two public available sequential datasets, STB and MuViHand.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 50 条
  • [1] Exploiting Temporal Contexts With Strided Transformer for 3D Human Pose Estimation
    Li, Wenhao
    Liu, Hong
    Ding, Runwei
    Liu, Mengyuan
    Wang, Pichao
    Yang, Wenming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1282 - 1293
  • [2] Active Learning for Bayesian 3D Hand Pose Estimation
    Caramalau, Razvan
    Bhattarai, Binod
    Kim, Tae-Kyun
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3418 - 3427
  • [3] Efficient Annotation and Learning for 3D Hand Pose Estimation: A Survey
    Ohkawa, Takehiko
    Furuta, Ryosuke
    Sato, Yoichi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (12) : 3193 - 3206
  • [4] Efficient Annotation and Learning for 3D Hand Pose Estimation: A Survey
    Takehiko Ohkawa
    Ryosuke Furuta
    Yoichi Sato
    International Journal of Computer Vision, 2023, 131 : 3193 - 3206
  • [5] Hand PointNet: 3D Hand Pose Estimation using Point Sets
    Ge, Liuhao
    Cai, Yujun
    Weng, Junwu
    Yuan, Junsong
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8417 - 8426
  • [6] Recurrent 3D Hand Pose Estimation Using Cascaded Pose-Guided 3D Alignments
    Deng, Xiaoming
    Zuo, Dexin
    Zhang, Yinda
    Cui, Zhaopeng
    Cheng, Jian
    Tan, Ping
    Chang, Liang
    Pollefeys, Marc
    Fanello, Sean
    Wang, Hongan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) : 932 - 945
  • [7] 3D hand pose estimation using RGBD images and hybrid deep learning networks
    Mofarreh-Bonab, Mohammad
    Seyedarabi, Hadi
    Mozaffari Tazehkand, Behzad
    Kasaei, Shohreh
    VISUAL COMPUTER, 2022, 38 (06): : 2023 - 2032
  • [8] 3D hand pose estimation using RGBD images and hybrid deep learning networks
    Mohammad Mofarreh-Bonab
    Hadi Seyedarabi
    Behzad Mozaffari Tazehkand
    Shohreh Kasaei
    The Visual Computer, 2022, 38 : 2023 - 2032
  • [9] 3D Hand Pose Estimation from RGB Using Privileged Learning with Depth Data
    Yuan, Shanxin
    Stenger, Bjorn
    Kim, Tae-Kyun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2866 - 2873
  • [10] Mobile robot control using 3D hand pose estimation
    Hoshino, Kiyoshi
    Kasahara, Takuya
    Igo, Naoki
    Tomida, Motomasa
    Tanimoto, Takanobu
    Mukai, Toshimitsu
    Brossard, Gilles
    Kotani, Hajime
    TENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2011, 8000