A Bayesian framework for abundance estimation in hyperspectral data using Markov random fields

被引:0
|
作者
Stites, Matthew R. [1 ]
Moon, Todd K. [1 ]
Gunther, Jacob H. [1 ]
Williams, Gustavious P. [2 ]
机构
[1] Utah State Univ, ECE Dept, Logan, UT 84322 USA
[2] Brigham Young Univ, Dept Civil Engn, Provo, UT 84602 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A model is proposed which uses neighborhoods of pixels as priors in a Bayesian setting to extract abundance information from a hyperspectral image. It is assumed that elements of the abundance vector for a pixel are independent, but that corresponding elements of abundance vectors for neighboring pixels are correlated. A posterior density encourages estimated abundances in neighboring pixels to be similar. Minimum mean-square error estimates are obtained by averaging samples from this density, where the samples are obtained by Gibbs sampling.
引用
收藏
页码:725 / +
页数:2
相关论文
共 50 条
  • [21] Estimation for hidden Markov random fields
    Elliott, RJ
    Aggoun, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 343 - 351
  • [22] Cover Estimation and Payload Location using Markov Random Fields
    Quach, Tu-Thach
    MEDIA WATERMARKING, SECURITY, AND FORENSICS 2014, 2014, 9028
  • [23] Motion estimation with Markov random fields by using a direct algorithm
    Kardouchi, M
    Dipanda, A
    Legrand, L
    NEW IMAGE PROCESSING TECHNIQUES AND APPLICATIONS: ALGORITHMS, METHODS, AND COMPONENTS II, 1997, 3101 : 95 - 103
  • [24] Hyperspectral Image Classification With CapsNet and Markov Random Fields
    Jiang, Xuefeng
    Zhang, Yue
    Liu, Wenbo
    Gao, Junyu
    Liu, Junrui
    Zhang, Yanning
    Lin, Jianzhe
    IEEE ACCESS, 2020, 8 : 191956 - 191968
  • [25] Bayesian modelling of spatial data using Markov random fields, with application to elemental composition of forest soil
    Hartman, Linda Werner
    MATHEMATICAL GEOLOGY, 2006, 38 (02): : 113 - 133
  • [26] Bayesian Modelling of Spatial Data Using Markov Random Fields, With Application to Elemental Composition of Forest Soil
    Linda Werner Hartman
    Mathematical Geology, 2006, 38 : 113 - 133
  • [27] Clutter modeling for subsurface detection in hyperspectral imagery using Markov random fields
    Masalmah, YM
    Vélez-Reyes, M
    Jiménez-Rodríguez, LO
    IMAGING SPECTROMETRY IX, 2003, 5159 : 52 - 63
  • [28] Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields
    Li, Wei
    Prasad, Saurabh
    Fowler, James E.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 153 - 157
  • [29] On coregionalized multivariate Gaussian Markov random fields: construction, parameterization, and Bayesian estimation and inference
    MacNab, Ying C.
    TEST, 2023, 32 (01) : 263 - 293
  • [30] On coregionalized multivariate Gaussian Markov random fields: construction, parameterization, and Bayesian estimation and inference
    Ying C. MacNab
    TEST, 2023, 32 : 263 - 293