A Bayesian framework for abundance estimation in hyperspectral data using Markov random fields

被引:0
|
作者
Stites, Matthew R. [1 ]
Moon, Todd K. [1 ]
Gunther, Jacob H. [1 ]
Williams, Gustavious P. [2 ]
机构
[1] Utah State Univ, ECE Dept, Logan, UT 84322 USA
[2] Brigham Young Univ, Dept Civil Engn, Provo, UT 84602 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A model is proposed which uses neighborhoods of pixels as priors in a Bayesian setting to extract abundance information from a hyperspectral image. It is assumed that elements of the abundance vector for a pixel are independent, but that corresponding elements of abundance vectors for neighboring pixels are correlated. A posterior density encourages estimated abundances in neighboring pixels to be similar. Minimum mean-square error estimates are obtained by averaging samples from this density, where the samples are obtained by Gibbs sampling.
引用
收藏
页码:725 / +
页数:2
相关论文
共 50 条
  • [1] Bayesian Stochastic Soil Modeling Framework Using Gaussian Markov Random Fields
    Wang, Hui
    Wang, Xiangrong
    Wellmann, J. Florian
    Liang, Robert Y.
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2018, 4 (02):
  • [2] Unmixing hyperspectral images using Markov random fields
    Eches, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 303 - 310
  • [3] Bayesian estimation of multivariate Gaussian Markov random fields with constraint
    MacNab, Ying C.
    [J]. STATISTICS IN MEDICINE, 2020, 39 (30) : 4767 - 4788
  • [4] Tensor field regularization using normalized convolution and Markov random fields in a Bayesian framework
    Westin, CF
    Martin-Fernandez, M
    Alberola-Lopez, C
    Ruiz-Alzola, J
    Knutsson, H
    [J]. VISUALIZATION AND PROCESSING OF TENSOR FIELDS, 2006, : 381 - +
  • [5] Bayesian image classification using Markov random fields
    Berthod, M
    Kato, Z
    Yu, S
    Zerubia, J
    [J]. IMAGE AND VISION COMPUTING, 1996, 14 (04) : 285 - 295
  • [6] Bayesian image classification using Markov random fields
    INRIA, Antipolis, France
    [J]. Image Vision Comput, 4 (285-295):
  • [7] Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
    Everitt, Richard G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (04) : 940 - 960
  • [8] ML parameter estimation for Markov random fields with applications to Bayesian tomography
    Saquib, SS
    Bouman, CA
    Sauer, K
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (07) : 1029 - 1044
  • [9] Optimization by Estimation of Distribution with DEUM Framework Based on Markov Random Fields
    Siddhartha Shakya
    John McCall
    [J]. Machine Intelligence Research, 2007, (03) : 262 - 272
  • [10] Optimization by Estimation of Distribution with DEUM Framework Based on Markov Random Fields
    Shakya, Siddhartha
    McCall, John
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2007, 4 (03) : 262 - 272