On measuring the joint probability density function of three-dimensional velocity components in turbulent flows

被引:7
|
作者
Soria, Julio [1 ,2 ]
Willert, Christian [3 ]
机构
[1] Monash Univ, Dept Mech & Aerosp Engn, LTRAC, Melbourne, Vic 3800, Australia
[2] King Abdulaziz Univ, Dept Aeronaut Engn, Jeddah 21413, Saudi Arabia
[3] Inst Prop Technol German Aerosp Ctr DLR, D-51170 Cologne, Germany
关键词
joint probability density function; PIV; turbulence; PARTICLE-IMAGE VELOCIMETRY;
D O I
10.1088/0957-0233/23/6/065301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the underlying theory to directly measure the joint probability density function (JPDF) of turbulent velocity fields. The raw data for these measurements can come from either reconstructed tomographic particle image velocimetry (PIV) volumes or holographic PIV volumes in 3D or from planar PIV images in 2D suitably pre-processed to satisfy the conditions required as per the analysis presented here. The underlying theory has been applied to 2D and 3D Gaussian turbulence velocity fields to illustrate its ability in determining mean velocities, standard deviations of the turbulent velocity fluctuations and correlation coefficients between the turbulent velocity fluctuation components. These examples have demonstrated that the mean velocity can be estimated to very high accuracy, i.e. to better than 1% even when estimating the 2D and 3D JPDF with the simplified equation that does not account for particle size. The turbulence velocity fluctuations through their standard deviations can be measured with a typical error of 1.5% and the correlation coefficients with a typical error of 2.5% when estimating the JPDF with the result that accounts for the particle size. This is the first technique that allows the estimation of 3C-3D turbulent velocity statistics via the direct measurement of the JPDF without any detrimental effects due to the high values of velocity gradients that are typically encountered in turbulent shear flows because it is not restricted by the requirement of uniform velocity within the measurement volume.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Asymptotic probability distribution function of longitudinal velocity increment in incompressible three-dimensional turbulence
    Nakano, T
    Tamaki, M
    Gotoh, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (06) : 1496 - 1505
  • [42] PROBABILITY DENSITY-FUNCTION APPROACH FOR COMPRESSIBLE TURBULENT REACTING FLOWS
    HSU, AT
    TSAI, YLP
    RAJU, MS
    AIAA JOURNAL, 1994, 32 (07) : 1407 - 1415
  • [43] A multienvironment conditional probability density function model for turbulent reacting flows
    Fox, RO
    Raman, V
    PHYSICS OF FLUIDS, 2004, 16 (12) : 4551 - 4565
  • [44] THE PROBABILITY DENSITY-FUNCTION OF A PASSIVE SCALAR IN TURBULENT SHEAR FLOWS
    KOLLMANN, W
    JANICKA, J
    PHYSICS OF FLUIDS, 1982, 25 (10) : 1755 - 1769
  • [46] The joint Probability Density Function for linear optic flow components
    Ivins, J
    Porrill, J
    Frisby, J
    Orban, G
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 795 - 798
  • [47] A laser method for measuring the three-dimensional velocity vector
    Belousov, PP
    Belousov, PY
    Dubnishchev, YN
    QUANTUM ELECTRONICS, 2001, 31 (01) : 79 - 82
  • [48] Vorticity fluxes: A tool for three-dimensional and secondary flows in turbulent shear flows
    Nagib, H. M.
    Vidal, A.
    Vinuesa, R.
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 89 : 39 - 48
  • [49] Velocity filtered density function for large eddy simulation of turbulent flows
    Gicquel, LYM
    Givi, P
    Jaberi, FA
    Pope, SB
    PHYSICS OF FLUIDS, 2002, 14 (03) : 1196 - 1213
  • [50] Three-dimensional supersonic turbulent flows past conical bodies
    Golovachev Y.P.
    Leont'eva N.V.
    Fluid Dynamics, 2000, 35 (1) : 81 - 86