Extended finite element method for cohesive crack growth

被引:1227
|
作者
Moës, N [1 ]
Belytschko, T [1 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
关键词
cohesive crack; finite elements; discontinuous approximation; stress intensity factors; size effect;
D O I
10.1016/S0013-7944(01)00128-X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The extended finite element method allows one to model displacement discontinuities which do not conform to interelement surfaces. This method is applied to modeling growth of arbitrary cohesive cracks. The growth of the cohesive zone is governed by requiring the stress intensity factors at the tip of the cohesive zone to vanish. This energetic approach avoids the evaluation of stresses at the mathematical tip of the crack. The effectiveness of the proposed approach is demonstrated by simulations of cohesive crack growth in concrete. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:813 / 833
页数:21
相关论文
共 50 条
  • [21] The numerical simulation of fatigue crack growth using extended finite element method
    Singh, I. V.
    Mishra, B. K.
    Bhattacharya, S.
    Patil, R. U.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2012, 36 (01) : 109 - 119
  • [22] A contact algorithm for cohesive cracks in the extended finite element method
    Fang, Huangcheng
    Zhang, Dingli
    Zhou, Mozhen
    Fang, Qian
    Wen, Ming
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (12) : 2747 - 2766
  • [23] A multiscale extended finite element method for crack propagation
    Guidault, P. -A.
    Allix, O.
    Champaney, L.
    Cornuault, C.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (05) : 381 - 399
  • [24] Application of the Extended Finite Element Method in Crack Propagation
    Di Y.
    Wang H.
    Dong L.
    Xing Z.
    Wang X.
    [J]. 1600, Cailiao Daobaoshe/ Materials Review (31): : 70 - 74and85
  • [25] A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials
    Liu, Chong
    Shen, Zhenzhong
    Gan, Lei
    Jin, Tian
    Zhang, Hongwei
    Liu, Detan
    [J]. MATERIALS, 2018, 11 (10)
  • [26] Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method
    Yang, Z. J.
    Deeks, A. J.
    [J]. FRACTURE MECHANICS OF CONCRETE AND CONCRETE STRUCTURES, VOLS 1-3: VOL 1: NEW TRENDS IN FRACTURE MECHANICS OF CONCRETE; VOL 2: DESIGN, ASSESSMENT AND RETROFITTING OF RC STRUCTURES; VOL 3: HIGH-PERFORMANCE CONCRETE, BRICK-MASONRY AND ENVIRONMENTAL ASPECTS, 2007, 1-3 : 133 - +
  • [27] Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method
    Yang, Z. J.
    Deeks, A. J.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2007, 143 (04) : 333 - 354
  • [28] Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method
    Z. J. Yang
    A. J. Deeks
    [J]. International Journal of Fracture, 2007, 143 : 333 - 354
  • [29] Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method
    Yang, Z. J.
    Deeks, A. J.
    [J]. ENGINEERING FRACTURE MECHANICS, 2007, 74 (16) : 2547 - 2573
  • [30] A multi-grid extended finite element method for elastic crack growth simulation
    Rannou, Johann
    Gravouil, Anthony
    Combescure, Alain
    [J]. EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2007, 16 (02): : 161 - 182