Frequency domain weighted nonlinear least squares estimation of parameter-varying differential equations

被引:12
|
作者
Goos, Jan [1 ]
Lataire, John [1 ]
Louarroudi, Ebrahim [1 ]
Pintelon, Rik [1 ]
机构
[1] Vrije Univ Brussel, ELEC, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Linear Parameter-Varying systems; Identification methods; CONTINUOUS-TIME; IDENTIFICATION; SYSTEMS;
D O I
10.1016/j.automatica.2016.09.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a frequency domain identification technique for estimation of Linear Parameter Varying (LPV) differential equations. In a band-limited setting, it is shown that the time derivatives of the input and output signals can be computed exactly in the frequency domain, even for non-periodic inputs and parameter variations. The method operates in an errors-in-variables framework (noisy input and output), but the scheduling signal is assumed to be known. Under these conditions, the proposed estimator is proven to be consistent. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 199
页数:9
相关论文
共 50 条
  • [1] LEAST SQUARES PARAMETER ESTIMATION IN CHAOTIC DIFFERENTIAL EQUATIONS
    Kallrath, Josef
    Schloeder, Johannes P.
    Bock, Hans Georg
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (1-2): : 353 - 371
  • [2] Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations
    Cao, Jiguo
    Huang, Jianhua Z.
    Wu, Hulin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (01) : 42 - 56
  • [3] Linear least squares parameter estimation of nonlinear reaction diffusion equations
    Mocenni, C.
    Madeo, D.
    Sparacino, E.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) : 2244 - 2257
  • [4] Fault estimation for a class of nonlinear algebro-differential parameter-varying systems
    Zetina-Rios, I. I.
    Osorio-Gordillo, G. L.
    Alma, M.
    Darouach, M.
    Astorga-Zaragoza, C. M.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2024, 79
  • [5] CONSTRAINED AND WEIGHTED LEAST SQUARES PROCEDURES FOR PARAMETER ESTIMATION
    VALLERSCHAMP, RE
    PERLMUTTER, DD
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1971, 10 (01): : 150 - +
  • [6] State estimation strategy for a class of nonlinear algebro-differential parameter-varying systems
    Zetina-Rios, I. I.
    Osorio-Gordillo, G. L.
    Alma, M.
    Darouach, M.
    Vargas-Mendez, R. -A.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (16) : 3085 - 3097
  • [7] Least Squares Estimation in Uncertain Differential Equations
    Sheng, Yuhong
    Yao, Kai
    Chen, Xiaowei
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (10) : 2651 - 2655
  • [8] On nonlinear weighted total least squares parameter estimation problem for the three-parameter Weibull density
    Markovic, Darija
    Jukic, Dragan
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (07) : 1839 - 1848
  • [9] Experimental validation of a regularized nonlinear least-squares-based identification approach for linear parameter-varying systems
    Turk, D.
    Gillis, J.
    Pipeleers, G.
    Swevers, J.
    [J]. PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2797 - 2807
  • [10] On the domain of attraction and local stabilization of nonlinear parameter-varying systems
    Lu, Linhong
    Fu, Rong
    Zeng, Jianping
    Duan, Zhisheng
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (01) : 17 - 32