Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations

被引:19
|
作者
Gacia, Przemyslaw D. [1 ]
Shrestha, Lok Kumar [1 ]
Bairi, Partha [1 ]
Sanchez-Ballester, Noelia M. [1 ]
Hill, Jonathan P. [1 ]
Boczkowska, Anna [2 ]
Abe, Hideki [3 ]
Ariga, Katsuhiko [1 ]
机构
[1] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-02507 Warsaw, Poland
[3] NIMS, Environm & Energy Mat Div, Environm Remediat Mat Unit, Catalyt Mat Grp, Tsukuba, Ibaraki 3050044, Japan
基金
日本学术振兴会;
关键词
Copper oxide nanostructures; Low-temperature synthesis; Hydrothermal methods; Self-assembly; Electrochemical properties; GROWTH; NANOPARTICLES; NANOCRYSTALS; METAL;
D O I
10.1016/j.ceramint.2015.03.323
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate low-temperature formation of copper oxide (CuO) nanostructures as well as temperature-controlled variation of morphology by applying hydrothermal methods with copper(1) acetate Cu(CH3COO)(2 center dot) H2O and 2-piperidinemethanol (2PPM) as starting materials. Monoclinic CuO nanostructures produced at 25 degrees C were of dendritic morphology with short nanorod-like substructures and exhibited a consequently large surface area (179 m(2) g(-1)). Cyclic voltammetry measurements confirmed pseudocapacitive behavior of these dendritic CuO nanostructures giving specific capacitance ca. 28.2 F g(-1) at a scan rate of 5 mV s(-1). Oxide nanomaterials prepared in this investigation were characterized using powder X-ray diffraction, scanning and transmission electron microscopies, and nitrogen adsorption/desorption techniques. It is expected that these materials exhibit improved sensing and catalytic properties due to the increased availability of surface adsorption sites. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:9426 / 9432
页数:7
相关论文
共 50 条
  • [21] Temperature-controlled synthesis of MgO nanorods
    Kim, Hyoun Woo
    Shim, Seung Hyun
    Lee, Chongmu
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (02) : 628 - 631
  • [22] Low-temperature, controlled synthesis of carbon nanotubes
    Dai, LM
    SMALL, 2005, 1 (03) : 274 - 276
  • [23] Low-temperature synthesis of zinc oxide nanoparticles
    Wu, Po-Yi
    Pike, Jenna
    Zhang, Feng
    Chan, Siu-Wai
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2006, 3 (04) : 272 - 278
  • [24] Low-temperature synthesis of Lead(II) oxide
    Yusupov, RA
    Mikhailov, OV
    Abzalov, RF
    Smerdova, SG
    Naumkina, NI
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2002, 47 (07) : 959 - 966
  • [25] Low-temperature solution synthesis of CuO nanorods with thin diameter
    Chen, Huiyu
    Zhao, Guizhe
    Liu, Yaqing
    MATERIALS LETTERS, 2013, 93 : 60 - 63
  • [26] Multichannel Nature of Synthesis of Carbon Nanostructures in Low-Temperature Plasma
    M. B. Shavelkina
    P. P. Ivanov
    R. Kh. Amirov
    A. N. Bocharov
    Plasma Physics Reports, 2021, 47 : 1014 - 1020
  • [27] Multichannel Nature of Synthesis of Carbon Nanostructures in Low-Temperature Plasma
    Shavelkina, M. B.
    Ivanov, P. P.
    Amirov, R. Kh
    Bocharov, A. N.
    PLASMA PHYSICS REPORTS, 2021, 47 (10) : 1014 - 1020
  • [28] Direct low-temperature synthesis of rutile nanostructures in ionic liquids
    Kaper, Helena
    Endres, Frank
    Djerdj, Igor
    Antonietti, Markus
    Smarsly, Bernd M.
    Maier, Joachim
    Hu, Yong-Sheng
    SMALL, 2007, 3 (10) : 1753 - 1763
  • [29] Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: Formation mechanism and structural properties
    Vaseem, Mohammad
    Umar, Ahmad
    Kim, Sang Hoon
    Hahn, Yoon-Bong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15): : 5729 - 5735
  • [30] MECHANISM OF THE SYNTHESIS OF METHANOL ON LOW-TEMPERATURE ZINC-COPPER OXIDE CATALYSTS.
    Kazanskii, V.B.
    Kinetics and Catalysis, 1986, 27 (2 pt 2) : 424 - 426