Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations

被引:19
|
作者
Gacia, Przemyslaw D. [1 ]
Shrestha, Lok Kumar [1 ]
Bairi, Partha [1 ]
Sanchez-Ballester, Noelia M. [1 ]
Hill, Jonathan P. [1 ]
Boczkowska, Anna [2 ]
Abe, Hideki [3 ]
Ariga, Katsuhiko [1 ]
机构
[1] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-02507 Warsaw, Poland
[3] NIMS, Environm & Energy Mat Div, Environm Remediat Mat Unit, Catalyt Mat Grp, Tsukuba, Ibaraki 3050044, Japan
基金
日本学术振兴会;
关键词
Copper oxide nanostructures; Low-temperature synthesis; Hydrothermal methods; Self-assembly; Electrochemical properties; GROWTH; NANOPARTICLES; NANOCRYSTALS; METAL;
D O I
10.1016/j.ceramint.2015.03.323
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate low-temperature formation of copper oxide (CuO) nanostructures as well as temperature-controlled variation of morphology by applying hydrothermal methods with copper(1) acetate Cu(CH3COO)(2 center dot) H2O and 2-piperidinemethanol (2PPM) as starting materials. Monoclinic CuO nanostructures produced at 25 degrees C were of dendritic morphology with short nanorod-like substructures and exhibited a consequently large surface area (179 m(2) g(-1)). Cyclic voltammetry measurements confirmed pseudocapacitive behavior of these dendritic CuO nanostructures giving specific capacitance ca. 28.2 F g(-1) at a scan rate of 5 mV s(-1). Oxide nanomaterials prepared in this investigation were characterized using powder X-ray diffraction, scanning and transmission electron microscopies, and nitrogen adsorption/desorption techniques. It is expected that these materials exhibit improved sensing and catalytic properties due to the increased availability of surface adsorption sites. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:9426 / 9432
页数:7
相关论文
共 50 条
  • [1] Low-temperature chemical synthesis of lanthanum copper oxide
    Xiaohui Wang
    Yanchun Zhou
    Journal of Materials Science, 2001, 36 : 3277 - 3282
  • [2] Low-temperature chemical synthesis of lanthanum copper oxide
    Wang, XH
    Zhou, YC
    JOURNAL OF MATERIALS SCIENCE, 2001, 36 (13) : 3277 - 3282
  • [3] Mesoporous CuO nanostructures for low-temperature CO oxidation
    Sourav Ghosh
    Sukanya Kundu
    Milan Kanti Naskar
    Bulletin of Materials Science, 2021, 44
  • [4] Mesoporous CuO nanostructures for low-temperature CO oxidation
    Ghosh, Sourav
    Kundu, Sukanya
    Naskar, Milan Kanti
    BULLETIN OF MATERIALS SCIENCE, 2021, 44 (03)
  • [5] LOW-TEMPERATURE OXIDATION OF COPPER - THE FORMATION OF CUO
    LENGLET, M
    KARTOUNI, K
    MACHEFERT, J
    CLAUDE, JM
    STEINMETZ, P
    BEAUPREZ, E
    HEINRICH, J
    CELATI, N
    MATERIALS RESEARCH BULLETIN, 1995, 30 (04) : 393 - 403
  • [6] Controlled morphological synthesis of temperature-dependent CuO nanostructures and their effect on photocatalytic performance
    Zhou, Diwen
    Pu, Xianjuan
    Jiao, Zheng
    Li, Weitao
    MATERIALS RESEARCH EXPRESS, 2022, 9 (09)
  • [7] Low temperature-controlled synthesis of hierarchical Cu2O/Cu(OH)2/CuO nanostructures for energy applications
    Marathey, Priyanka
    Khanna, Sakshum
    Pati, Ranjan
    Mukhopadhyay, Indrajit
    Ray, Abhijit
    JOURNAL OF MATERIALS RESEARCH, 2019, 34 (18) : 3173 - 3185
  • [8] Writing and Low-Temperature Characterization of Oxide Nanostructures
    Levy, Akash
    Bi, Feng
    Huang, Mengchen
    Lu, Shicheng
    Tomczyk, Michelle
    Cheng, Guanglei
    Irvin, Patrick
    Levy, Jeremy
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (89):
  • [9] Manganese oxide nanostructures: low-temperature selective synthesis and thermal conversion
    Lan, Leilei
    Gu, Guangrui
    Li, Quanjun
    Zhang, Huafang
    Xu, Ke
    Liu, Bo
    Liu, Bingbing
    RSC ADVANCES, 2015, 5 (32): : 25250 - 25257
  • [10] One-pot low-temperature sonochemical synthesis of CuO nanostructures and their electrochemical properties
    Kim, Da-Sol
    Kim, Jae-Chan
    Kim, Byung-Kook
    Kim, Dong-Wan
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 19454 - 19460