Visual Saliency Detection via Sparse Residual and Outlier Detection

被引:11
|
作者
Tang, He [1 ]
Chen, Chuanbo [1 ]
Pei, Xiaobing [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Peoples R China
关键词
Guided filter; outlier detection; saliency detection; sparse coding; ATTENTION; FRAMEWORK;
D O I
10.1109/LSP.2016.2617340
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a bottom-up saliency model to predict eye fixation locations. Unlike traditional models that measure saliency by computing local or global distinctness, the proposed model considers saliency as the prediction error, because we believe that image patches or pixels with higher prediction error are more salient than others. The prediction error consists of both mispredicted error and unpredicted error. We propose a new algorithm called sparse residual to compute the mispredicted error. We then adopt outlier detection to compute the unpredicted error. Finally, we obtain the saliency map from merging the two results together via a guided filter. Extensive experiments on three benchmark databases show that our model is superior to 12 state-of-the-art models.
引用
收藏
页码:1736 / 1740
页数:5
相关论文
共 50 条
  • [21] Learning Sparse Dictionaries for Saliency Detection
    Guo, Karen
    Chen, Hwann-Tzong
    2012 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2012,
  • [22] An image sparse representation for saliency detection
    Yang, J. (yangjun9118@gmail.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [23] Saliency detection via image sparse representation and color features combination
    Zhang, Xufan
    Wang, Yong
    Chen, Zhenxing
    Yan, Jun
    Wang, Dianhong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (31-32) : 23147 - 23159
  • [24] Saliency detection via image sparse representation and color features combination
    Xufan Zhang
    Yong Wang
    Zhenxing Chen
    Jun Yan
    Dianhong Wang
    Multimedia Tools and Applications, 2020, 79 : 23147 - 23159
  • [25] VISUAL SALIENCY DETECTION VIA RANK-SPARSITY DECOMPOSITION
    Yan, Junchi
    Liu, Jian
    Li, Yin
    Niu, Zhibin
    Liu, Yuncai
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1089 - 1092
  • [26] Efficient Visual Saliency Detection via Multi-Cues
    Wu, Junfeng
    Yu, Hong
    Sun, Jianwei
    Qu, Wenyu
    Cui, Zhen
    IEEE ACCESS, 2019, 7 : 14728 - 14735
  • [27] Vehicle detection based on visual saliency and deep sparse convolution hierarchical model
    Yingfeng Cai
    Hai Wang
    Xiaobo Chen
    Li Gao
    Long Chen
    Chinese Journal of Mechanical Engineering, 2016, 29 : 765 - 772
  • [28] Unsupervised visual saliency detection via information content measuring
    Wu, Di
    Sun, Xiudong
    Jiang, Yongyuan
    Hou, Chunfeng
    ELECTRONICS LETTERS, 2012, 48 (25) : 1591 - 1593
  • [29] Visual Saliency Detection via Prior Regularized Manifold Ranking
    Xiao, Yun
    Jiang, Bo
    Tu, Zhengzheng
    Tang, Jin
    COMPUTER VISION, PT III, 2017, 773 : 711 - 722
  • [30] Visual Saliency Detection via Convolutional Gated Recurrent Units
    Bardhan, Sayanti
    Das, Sukhendu
    Jacob, Shibu
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 162 - 174