Classifying the unknown: Discovering novel gravitational-wave detector glitches using similarity learning

被引:32
|
作者
Coughlin, S. [1 ,2 ]
Bahaadini, S. [3 ]
Rohani, N. [3 ]
Zevin, M. [2 ]
Patane, O. [4 ]
Harandi, M. [5 ]
Jackson, C. [5 ]
Noroozi, V. [6 ]
Allen, S. [7 ]
Areeda, J. [4 ]
Coughlin, M. [8 ]
Ruiz, P. [3 ]
Berry, C. P. L. [2 ]
Crowston, K. [5 ]
Katsaggelos, A. K. [3 ]
Lundgren, A. [9 ]
Osterlund, C. [5 ]
Smith, J. R. [4 ]
Trouille, L. [7 ]
Kalogera, V. [2 ]
机构
[1] Cardiff Univ, Phys & Astron, Cardiff CF10 2FH, S Glam, Wales
[2] Northwestern Univ, Ctr Interdisciplinary Explorat & Res CIERA, Evanston, IL 60208 USA
[3] Northwestern Univ, Elect Engn & Comp Sci, Evanston, IL 60201 USA
[4] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92831 USA
[5] Syracuse Univ, Sch Informat Studies, Syracuse, NY 13210 USA
[6] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
[7] Adler Planetarium, Chicago, IL 60605 USA
[8] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[9] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2UP, Hants, England
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.99.082002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project Gravity Spy has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run, we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program.
引用
收藏
页数:8
相关论文
共 50 条
  • [23] Green light for Indian gravitational-wave detector
    Padma, T. V.
    PHYSICS WORLD, 2023, 36 (06) : 12 - 12
  • [24] Gravitational-wave parameter inference using Deep Learning
    Alvares, Joao D.
    Font, Jose A.
    Freitas, Felipe F.
    Freitas, Osvaldo G.
    Morais, Antonio P.
    Nunes, Solange
    Onofre, Antonio
    Torres-Forne, Alejandro
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 165 - 170
  • [25] VIRGO detector rejoins gravitational-wave hunt
    Banks, Michael
    PHYSICS WORLD, 2017, 30 (09) : 8 - 8
  • [26] Comparison of unknown gravitational-wave signals in two detectors
    Moreschi, Osvaldo M.
    ASTROPHYSICS AND SPACE SCIENCE, 2024, 369 (01)
  • [27] Comparison of unknown gravitational-wave signals in two detectors
    Osvaldo M. Moreschi
    Astrophysics and Space Science, 2024, 369
  • [28] PROPOSAL FOR A NOVEL GRAVITATIONAL-WAVE SENSOR
    NIKSCH, M
    BINNIG, G
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (02): : 470 - 471
  • [29] Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO
    Kuns, Kevin A.
    Yu, Hang
    Chen, Yanbei
    Adhikari, Rana X.
    PHYSICAL REVIEW D, 2020, 102 (04)
  • [30] A quantum-enhanced prototype gravitational-wave detector
    K. Goda
    O. Miyakawa
    E. E. Mikhailov
    S. Saraf
    R. Adhikari
    K. McKenzie
    R. Ward
    S. Vass
    A. J. Weinstein
    N. Mavalvala
    Nature Physics, 2008, 4 : 472 - 476