Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator

被引:10
|
作者
Mota, RD
Granados, VD
Queijeiro, A
García, J
机构
[1] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn Tecnol Ava, Mexico City 07340, DF, Mexico
[2] Inst Politecn Nacl, Escuela Superior Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 12期
关键词
D O I
10.1088/0305-4470/35/12/318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the quantum two-dimensional isotropic harmonic oscillator we show that the Infeld-Hull radial operators, as well as those of the supersymmetric approach for the radial equation, are contained in the constants of motion of the problem.
引用
收藏
页码:2979 / 2984
页数:6
相关论文
共 50 条
  • [31] The generic spacing distribution of the two-dimensional harmonic oscillator
    Greenman, CD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 4065 - 4081
  • [32] Representation of the Green function of a two-dimensional harmonic oscillator
    Fazullin, Z. Yu
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 107 (03): : 3 - 9
  • [33] Modeling a two-dimensional distorted stochastic harmonic oscillator
    Gontchar, Igor I.
    Chushnyakova, Maria V.
    Volkova, Vera K.
    Blesman, Alexander I.
    2017 XI INTERNATIONAL IEEE SCIENTIFIC AND TECHNICAL CONFERENCE DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES (DYNAMICS), 2017,
  • [34] ASYMPTOTIC PRESENTATION OF EIGENFUNCTIONS OF A TWO-DIMENSIONAL HARMONIC OSCILLATOR
    Akhmerova, E. F.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (04): : 13 - 19
  • [35] QUADRATIC CONSTANTS OF MOTION FOR CLASSICAL HARMONIC OSCILLATOR
    BRAGG, LE
    TURNER, LR
    AMERICAN JOURNAL OF PHYSICS, 1966, 34 (10) : 963 - &
  • [36] Entanglement of two interacting bosons in a two-dimensional isotropic harmonic trap
    Sun, B.
    Pindzola, M.
    PHYSICS LETTERS A, 2009, 373 (42) : 3833 - 3837
  • [37] Ladder operators in repulsive harmonic oscillator with application to the Schwinger effect
    Aouda, Kenichi
    Kanda, Naohiro
    Naka, Shigefumi
    Toyoda, Haruki
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [38] Harmonic oscillator with minimal length uncertainty relations and ladder operators
    Dadic, I
    Jonke, L
    Meljanac, S
    PHYSICAL REVIEW D, 2003, 67 (08)
  • [39] CHARACTERISTICS OF STOCHASTIC MOTION OF TWO-DIMENSIONAL NONLINEAR OSCILLATOR
    ELIUTIN, PV
    KOROLEV, VG
    DOKLADY AKADEMII NAUK SSSR, 1989, 304 (01): : 83 - 87
  • [40] Two-dimensional model of a kicked oscillator: Motion with intermittency
    Abdullaev, S. S.
    CHAOS, 1994, 4 (03) : 569 - 581