Thermal shock resistance of solids associated with hyperbolic heat conduction theory

被引:30
|
作者
Wang, B. L. [1 ]
Li, J. E. [1 ]
机构
[1] Harbin Inst Technol, Grad Sch Shenzhen, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
thermal shock resistance; fracture mechanics; hyperbolic heat conduction; non-Fourier heat conduction; HALF-PLANE; LEQUATION; COATINGS; FRACTURE; PHASE;
D O I
10.1098/rspa.2012.0754
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The thermal shock resistance of solids is analysed for a plate subjected to a sudden temperature change under the framework of hyperbolic, non-Fourier heat conduction. The closed form solution for the temperature field and the associated thermal stress are obtained for the plate without cracking. The transient thermal stress intensity factors are obtained through a weight function method. The maximum thermal shock temperature that the plate can sustain without catastrophic failure is obtained according to the two distinct criteria: (i) maximum local tensile stress criterion and (ii) maximum stress intensity factor criterion. The difference between the non-Fourier solutions and the classical Fourier solution is discussed. The traditional Fourier heat conduction considerably overestimates the thermal shock resistance of the solid. This confirms the fact that introduction of the non-Fourier heat conduction model is essential in the evaluation of thermal shock resistance of solids.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On hyperbolic heat conduction in solids: minimum mean free path of energy carriers and a method of estimating thermal diffusivity and heat propagation characteristics
    Benacka, Jan
    HEAT AND MASS TRANSFER, 2008, 44 (07) : 873 - 887
  • [22] Application of hyperbolic heat conduction model in thermal lens spectroscopy
    Coimbra, Igor Jose do Carmo
    da Silva, Luiz Fernando Lobato
    Moreira, Sanclayton Geraldo Carneiro
    Estumano, Diego Cardoso
    Macedo, Emanuel N.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (05) : 785 - 802
  • [23] A generalized thermal boundary condition for the hyperbolic heat conduction model
    M. A. Al-Nimr
    A. F. Khadrawi
    M. Hammad
    Heat and Mass Transfer, 2002, 39 : 69 - 79
  • [24] A generalized thermal boundary condition for the hyperbolic heat conduction model
    Al-Nimr, MA
    Khadrawi, AF
    Hammad, M
    HEAT AND MASS TRANSFER, 2002, 39 (01) : 69 - 79
  • [25] Effect of thermal losses on the microscopic hyperbolic heat conduction model
    M. Al-Nimr
    B. Abu-Hijleh
    M. Hader
    Heat and Mass Transfer, 2003, 39 : 201 - 207
  • [26] Effect of thermal losses on the microscopic hyperbolic heat conduction model
    Al-Nimr, MA
    Abu-Hijleh, BA
    Hader, MA
    HEAT AND MASS TRANSFER, 2003, 39 (03) : 201 - 207
  • [27] Heat conduction of solids
    Brown, GG
    Furnas, CC
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF CHEMICAL ENGINEERS, 1926, 18 : 295 - 307
  • [28] CONDUCTION OF HEAT IN SOLIDS
    SPROULL, RL
    SCIENTIFIC AMERICAN, 1962, 207 (06) : 92 - &
  • [29] A Thermal Stability Criterion for Heat Conduction in Multilayer Composite Solids
    Yang, Bingen
    Shi, Hang
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (11): : 1 - 7
  • [30] Steady state heat conduction in solids with exponential thermal conductivity
    Habieb, F.Z.
    AEJ - Alexandria Engineering Journal, 1998, 37 (05):