Connections on modules over quasi-homogeneous plane curves

被引:1
|
作者
Eriksen, Eivind [1 ]
机构
[1] Oslo Univ Coll, Fac Engn, N-0130 Oslo, Norway
关键词
connections on modules; quasi-homogeneous plane curve singularities; simple curve singularities;
D O I
10.1080/00927870802110797
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of characteristic 0, and let A=k[x, y]/(f) be a quasi-homogeneous plane curve. We show that for any graded torsion free A-module M, there exists a natural graded integrable connection, i.e., a graded A-linear homomorphism : Der(k)(A) --> End(k)(M), that satisfies the derivation property and preserves the Lie product. In particular, a torsion free module N over the complete local ring B = (A) over cap admits a natural integrable connection if A is a simple curve singularity, or if A is irreducible and N is a gradable module.
引用
收藏
页码:3032 / 3041
页数:10
相关论文
共 50 条
  • [11] HOMOGENEOUS AND QUASI-HOMOGENEOUS FIELDS
    WOLF, E
    CARTER, WH
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1983, 73 (12) : 1874 - 1874
  • [12] Propagation of the light generated by quasi-homogeneous sources through quasi-homogeneous media
    李伽
    陈延如
    赵琦
    周木春
    徐实学
    [J]. Optoelectronics Letters, 2010, 6 (01) : 69 - 71
  • [13] ON QUASI-HOMOGENEOUS COPULAS
    Mayor, Gaspar
    Mesiar, Radko
    Torrens, Joan
    [J]. KYBERNETIKA, 2008, 44 (06) : 745 - 756
  • [14] Propagation of the light generated by quasi-homogeneous sources through quasi-homogeneous media
    Li J.
    Chen Y.-R.
    Zhao Q.
    Zhou M.-C.
    Xu S.-X.
    [J]. Optoelectronics Letters, 2010, 6 (01) : 69 - 71
  • [15] Asymptotically quasi-homogeneous distributions
    Drozhzhinov, Yu. N.
    Zavialov, B. I.
    [J]. DOKLADY MATHEMATICS, 2008, 78 (01) : 503 - 507
  • [16] ON THE CLASSIFICATION OF QUASI-HOMOGENEOUS FUNCTIONS
    KREUZER, M
    SKARKE, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) : 137 - 147
  • [17] Asymptotically quasi-homogeneous distributions
    Yu. N. Drozhzhinov
    B. I. Zavialov
    [J]. Doklady Mathematics, 2008, 78 : 503 - 507
  • [18] RADIOMETRY WITH QUASI-HOMOGENEOUS SOURCES
    FOLEY, JT
    WOLF, E
    [J]. JOURNAL OF MODERN OPTICS, 1995, 42 (04) : 787 - 798
  • [19] Quasi-homogeneous normal forms
    Algaba, A
    Freire, E
    Gamero, E
    García, C
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) : 193 - 216
  • [20] On Quasi-Homogeneous Production Functions
    Vilcu, Alina-Daniela
    Vilcu, Gabriel-Eduard
    [J]. SYMMETRY-BASEL, 2019, 11 (08):