A synapse memristor model with forgetting effect

被引:66
|
作者
Chen, Ling [1 ]
Li, Chuandong [1 ]
Huang, Tingwen [3 ]
Chen, Yiran [4 ]
Wen, Shiping [2 ]
Qi, Jiangtao [1 ]
机构
[1] Chongqing Univ, Coll Comp, Chongqing 400044, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[3] Texas A&M Univ Qatar, Doha 5825, Qatar
[4] Univ Pittsburgh, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
Memristor; Ion diffusion; Forgetting; Long term memory;
D O I
10.1016/j.physleta.2013.10.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we improved the ion diffusion term proposed in literature [13] and redesigned the previous model as a dynamical model with two more internal state variables 'forgetting rate' and 'retention' besides the original variable 'conductance'. The new model can not only describe the basic memory ability of memristor but also be able to capture the new finding forgetting behavior in memristor. And different from the previous model, the transition from short term memory to long term memory is also defined by the new model. Besides, the new model is better matched with the physical memristor (Pd/WOx/W) than the previous one. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3260 / 3265
页数:6
相关论文
共 50 条
  • [31] Hybrid CMOS-Memristor synapse circuits for implementing Ca ion-based plasticity model
    Lim, Jae Gwang
    Park, Sung-jae
    Lee, Sang Min
    Jeong, Yeonjoo
    Kim, Jaewook
    Lee, Suyoun
    Park, Jongkil
    Hwang, Gyu Weon
    Lee, Kyeong-Seok
    Park, Seongsik
    Jang, Hyun Jae
    Ju, Byeong-Kwon
    Park, Jong Keuk
    Kim, Inho
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] An improved memristor model connecting plastic synapse and nonlinear spiking neuron (vol 52, 275402, 2019)
    Hu, S. G.
    Qiao, G. C.
    Liu, Y. A.
    Rong, L. M.
    Yu, Q.
    Liu, Y.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (31)
  • [33] 2T1M Neuromorphic Synapse with Pt-Hf-Ti Memristor Model
    Gamal, Heba Allah
    Mostafa, Hassan
    Haggag, Ayman
    ADVANCES IN SYSTEM-INTEGRATED INTELLIGENCE, SYSINT 2022, 2023, 546 : 714 - 726
  • [34] Analysis of the Memristor-Based Crossbar Synapse for Neuromorphic Systems
    Kim, Bokyung
    Jo, Sumin
    Sun, Wookyung
    Shin, Hyungsoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (10) : 6703 - 6709
  • [35] Organic polymer artificial synapse device based on amylum memristor
    Enming Zhao
    Jianbo Jiang
    Guangyu Liu
    Chen Wang
    Chichun Zhou
    Zhenyu Zhang
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [36] Solid-State Synapse Based on Magnetoelectrically Coupled Memristor
    Huang, Weichuan
    Fang, Yue-Wen
    Yin, Yuewei
    Tian, Bobo
    Zhao, Wenbo
    Hou, Chuangming
    Ma, Chao
    Li, Qi
    Tsymbal, Evgeny Y.
    Duan, Chun-Gang
    Li, Xiaoguang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) : 5649 - 5656
  • [37] Organic polymer artificial synapse device based on amylum memristor
    Zhao, Enming
    Jiang, Jianbo
    Liu, Guangyu
    Wang, Chen
    Zhou, Chichun
    Zhang, Zhenyu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (23)
  • [38] Photoelectric-motivated memristor to realize single nerve synapse
    Cao, Shengguo
    Jin, Xiangliang
    Wang, Yang
    Jiang, Bin
    Peng, Yan
    Luo, Jun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (11)
  • [39] HfAlOx-based ferroelectric memristor for nociceptor and synapse functions
    Ju, Dongyeol
    Park, Yongjin
    Noh, Minseo
    Koo, Minsuk
    Kim, Sungjun
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (08):
  • [40] Learning with Memristor Bridge Synapse-Based Neural Networks
    Adhikari, Shyam Prasad
    Kim, Hyongsuk
    Budhathoki, Ram Kaji
    Yang, Changju
    Kim, Jung-Mu
    2014 14TH INTERNATIONAL WORKSHOP ON CELLULAR NANOSCALE NETWORKS AND THEIR APPLICATIONS (CNNA), 2014,