A synapse memristor model with forgetting effect

被引:66
|
作者
Chen, Ling [1 ]
Li, Chuandong [1 ]
Huang, Tingwen [3 ]
Chen, Yiran [4 ]
Wen, Shiping [2 ]
Qi, Jiangtao [1 ]
机构
[1] Chongqing Univ, Coll Comp, Chongqing 400044, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[3] Texas A&M Univ Qatar, Doha 5825, Qatar
[4] Univ Pittsburgh, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
Memristor; Ion diffusion; Forgetting; Long term memory;
D O I
10.1016/j.physleta.2013.10.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we improved the ion diffusion term proposed in literature [13] and redesigned the previous model as a dynamical model with two more internal state variables 'forgetting rate' and 'retention' besides the original variable 'conductance'. The new model can not only describe the basic memory ability of memristor but also be able to capture the new finding forgetting behavior in memristor. And different from the previous model, the transition from short term memory to long term memory is also defined by the new model. Besides, the new model is better matched with the physical memristor (Pd/WOx/W) than the previous one. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3260 / 3265
页数:6
相关论文
共 50 条
  • [1] An Improved Memristor Model Based on the Electrochemical Metallization Effect as a Synapse for Biomimetic Applications
    Dai, Yuehua
    Wang, Xiaoqing
    Yang, Bin
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (03):
  • [2] The bipolar and unipolar reversible behavior on the forgetting memristor model
    Chen, Ling
    Li, Chuandong
    Huang, Tingwen
    Hu, Xiaofang
    Chen, Yiran
    NEUROCOMPUTING, 2016, 171 : 1637 - 1643
  • [3] An improved WOx memristor model with synapse characteristic analysis
    Meng Fan-Yi
    Duan Shu-Kai
    Wang Li-Dan
    Hu Xiao-Fang
    Dong Zhe-Kang
    ACTA PHYSICA SINICA, 2015, 64 (14)
  • [4] An improved memristor model connecting plastic synapse and nonlinear spiking neuron
    Hu, S. G.
    Qiao, G. C.
    Liu, A.
    Rong, L. M.
    Yu, Q.
    Liu, Y.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (27)
  • [5] Improved Learning Experience Memristor Model and Application as Neural Network Synapse
    Zhang, Xiaohong
    Long, Keliu
    IEEE ACCESS, 2019, 7 : 15262 - 15271
  • [6] Effect of oxygen concentration in ZnO-based transparent flexible memristor synapse
    Patnaik, Asutosh
    Mohanty, Srikant Kumar
    Sahoo, Narayan
    Panda, Debashis
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (18)
  • [7] Excitatory and inhibitory actions of a memristor bridge synapse
    Yang, Changju
    Adhikari, Shyam Prasad
    Kim, Hyongsuk
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (06)
  • [8] A Hybrid CMOS-Memristor Neuromorphic Synapse
    Azghadi, Mostafa Rahimi
    Linares-Barranco, Bernabe
    Abbott, Derek
    Leong, Philip H. W.
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2017, 11 (02) : 434 - 445
  • [9] Excitatory and inhibitory actions of a memristor bridge synapse
    Changju YANG
    Shyam Prasad ADHIKARI
    Hyongsuk KIM
    ScienceChina(InformationSciences), 2018, 61 (06) : 168 - 169
  • [10] A Cryogenic Artificial Synapse based on Superconducting Memristor
    Islam, Md Mazharul
    Alam, Shamiul
    Udoy, Md Rahatul Islam
    Hossain, Md. Shafayat
    Aziz, Ahmedullah
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 143 - 148