High-throughput phenotyping of an apple core collection: identification of genotypes with high water use efficiency

被引:0
|
作者
Lopez, G. [1 ]
Pallas, B. [1 ]
Martinez, S. [1 ]
Lauri, P. E. [1 ]
Regnard, J. L. [1 ]
Durel, C. E. [2 ]
Costes, E. [1 ]
机构
[1] INRA, UMR 1334, Architecture & Functioning Fruit Species, AGAP CIRAD,Montpellier SupAgro, TA A 96-03, F-34398 Montpellier 5, France
[2] INRA, Inst Rech Hort & Semences, UMR 1345, SFR QuaSaV 4207, Beaucouze, France
关键词
drought; Malus x domestica Borkh; plant biomass; plant breeding; plant transpiration; soil water restriction; water stress;
D O I
10.17660/ActaHortic.2017.1150.48
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
To detect genotypes with high water use efficiency (WUE) in apple (Malus x domestica), 193 genotypes from an INRA core collection were evaluated in 2014. Eight grafted replicates per genotype grown as one-year-old scions were studied in a high-throughput phenotyping platform (PhenoArch). Individual pot weight was recorded twice a day and irrigation was scheduled for 46 days according to two irrigation treatments: well-watered (WW), maintaining soil water content (SWC) at 1.4 g g(-1); and water stress (WS), reducing SWC until 0.7 g g(-1) and maintaining this value for ten days. For each genotype, half of the replicates were WW while the other half were grown under WS. Plant 3D images were automatically acquired every two days. Analysis of images and pot weight differences allowed the estimation of the accumulated whole-plant biomass (A_Bio) and transpiration (Plant_T) during the experiment. WUE was calculated as the ratio A_Bio/Plant_T. A_Bio and WUE had a higher genetic variation than Plant_T under WW and WS conditions. The genetic variation in WUE is a promising result, indicating that available genetic resources such as the INRA core collection could be useful to improve apple plant material for the use of water. WS reduced A_Bio and Plant_T but the reduction was less evident in WUE. Some genotypes had similar WUE values under WW and WS conditions. We identified of a group of 38 genotypes with high WUE under WW and WS. The existence of genotypes with high WUE whatever the water regime in apple may encourage apple breeders to consider the use of these genotypes as potential parents for improving apple plant material for the use of water.
引用
收藏
页码:335 / 340
页数:6
相关论文
共 50 条
  • [31] High-throughput Phenotyping of Inflorescence Type in Hydrangea
    Alexander, Lisa
    Wu, Xingbo
    HORTSCIENCE, 2020, 55 (09) : S68 - S68
  • [32] Translating High-Throughput Phenotyping into Genetic Gain
    Luis Araus, Jose
    Kefauver, Shawn C.
    Zaman-Allah, Mainassara
    Olsen, Mike S.
    Cairns, Jill E.
    TRENDS IN PLANT SCIENCE, 2018, 23 (05) : 451 - 466
  • [33] Imaging for High-Throughput Phenotyping in Energy Sorghum
    Batz, Jose
    Mendez-Dorado, Mario A.
    Thomasson, J. Alex
    JOURNAL OF IMAGING, 2016, 2 (01)
  • [34] Initial steps for high-throughput phenotyping in vineyards
    Herzog, K.
    Roscher, R.
    Wieland, M.
    Kicherer, A.
    Laebe, T.
    Foerstner, W.
    Kuhlmann, H.
    Toepfer, R.
    VITIS, 2014, 53 (01) : 1 - 8
  • [35] Utilization of Spectral Indices for High-Throughput Phenotyping
    Tayade, Rupesh
    Yoon, Jungbeom
    Lay, Liny
    Khan, Abdul Latif
    Yoon, Youngnam
    Kim, Yoonha
    PLANTS-BASEL, 2022, 11 (13):
  • [36] High-throughput phenotyping for trait detection in vineyards
    Kicherer, Anna
    Herzog, Katja
    Toepfer, Reinhard
    38TH WORLD CONGRESS OF VINE AND WINE (PART 1), 2015, 5
  • [37] Radiomics: a primer on high-throughput image phenotyping
    Lafata, Kyle J.
    Wang, Yuqi
    Konkel, Brandon
    Yin, Fang-Fang
    Bashir, Mustafa R.
    ABDOMINAL RADIOLOGY, 2022, 47 (09) : 2986 - 3002
  • [38] High-throughput plant phenotyping: a role for metabolomics?
    Hall, Robert D.
    D'Auria, John C.
    Ferreira, Antonio C. Silva
    Gibon, Yves
    Kruszka, Dariusz
    Mishra, Puneet
    van de Zedde, Rick
    TRENDS IN PLANT SCIENCE, 2022, 27 (06) : 549 - 563
  • [39] Plant chip for high-throughput phenotyping of Arabidopsis
    Jiang, Huawei
    Xu, Zhen
    Aluru, Maneesha R.
    Dong, Liang
    LAB ON A CHIP, 2014, 14 (07) : 1281 - 1293
  • [40] High-throughput phenotyping technology for maize roots
    Grift, T. E.
    Novais, J.
    Bohn, M.
    BIOSYSTEMS ENGINEERING, 2011, 110 (01) : 40 - 48