A Compositional Model for Low-Dimensional Image Set Representation

被引:8
|
作者
Mobahi, Hossein [1 ]
Liu, Ce [2 ]
Freeman, William T. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Microsoft Res, Cambridge, MA USA
关键词
D O I
10.1109/CVPR.2014.172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning a low-dimensional representation of images is useful for various applications in graphics and computer vision. Existing solutions either require manually specified landmarks for corresponding points in the images, or are restricted to specific objects or shape deformations. This paper alleviates these limitations by imposing a specific model for generating images; the nested composition of color, shape, and appearance. We show that each component can be approximated by a low-dimensional subspace when the others are factored out. Our formulation allows for efficient learning and experiments show encouraging results.
引用
收藏
页码:1322 / 1329
页数:8
相关论文
共 50 条
  • [31] An influence maximization algorithm based on low-dimensional representation learning
    Yuening Liu
    Liqing Qiu
    Chengai Sun
    Applied Intelligence, 2022, 52 : 15865 - 15882
  • [32] LDR-LLE: LLE with Low-Dimensional Neighborhood Representation
    Goldberg, Yair
    Ritov, Ya'acov
    ADVANCES IN VISUAL COMPUTING, PT II, PROCEEDINGS, 2008, 5359 : 43 - +
  • [33] QUADRATIC DISCRIMINATION - SOME RESULTS ON OPTIMAL LOW-DIMENSIONAL REPRESENTATION
    YOUNG, DM
    MARCO, VR
    ODELL, PL
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1987, 17 (03) : 307 - 319
  • [34] LOW-DIMENSIONAL REPRESENTATION OF FACES IN HIGHER DIMENSIONS OF THE FACE SPACE
    OTOOLE, AJ
    ABDI, H
    DEFFENBACHER, KA
    VALENTIN, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (03): : 405 - 411
  • [35] Learning Interpretable Low-dimensional Representation via Physical Symmetry
    Liu, Xuanjie
    Chin, Daniel
    Huang, Yichen
    Xia, Gus
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [36] A low-dimensional representation for robust partial isometric correspondences computation
    Brunton, Alan
    Wand, Michael
    Wuhrer, Stefanie
    Seidel, Hans-Peter
    Weinkauf, Tino
    GRAPHICAL MODELS, 2014, 76 : 70 - 85
  • [38] Predicting cognitive decline in a low-dimensional representation of brain morphology
    Rémi Lamontagne-Caron
    Patrick Desrosiers
    Olivier Potvin
    Nicolas Doyon
    Simon Duchesne
    Scientific Reports, 13 (1)
  • [39] A low-dimensional representation of the structure of real world scenes.
    Torralba, A
    Oliva, A
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2000, 41 (04) : S723 - S723
  • [40] Low-Dimensional Representation Learning from Imbalanced Data Streams
    Korycki, Lukasz
    Krawczyk, Bartosz
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 629 - 641