Change Frequency Heatmaps for Temporal Multivariate Phenological Data Analysis

被引:4
|
作者
Mariano, Greice C. [1 ]
Soares, Natalia C. [2 ]
Morellato, L. Patricia C. [2 ]
Torres, Ricardo da S. [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
[2] Univ Estadual Paulista UNESP, Inst Biosci, Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
RAIN-FOREST TREES; PLANT PHENOLOGY; FLOWERING PHENOLOGY; MOVEMENT; PATTERNS; TIME; RECOGNITION; NETWORKS; SET;
D O I
10.1109/eScience.2017.44
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The huge amount of multivariate temporal data that has been produced in several applications demands the creation of appropriate tools for the analysis and pattern characterization of change. This paper introduces a novel image-based representation, named Change Frequency Heatmap (CFH), to encode temporal changes of multivariate numerical data. The method computes histograms of change patterns observed at successive timestamps. We validate the use of CFHs through the creation of a temporal change characterization tool to support complex plant phenology analysis, concerning the characterization of plant life cycle changes of multiple individuals and species over time. We demonstrate the potential of CFH to support visual identification of complex temporal change patterns, especially to decipher interindividual variations in plant phenology.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 50 条
  • [41] Change point detection for compositional multivariate data
    K. J., Prabuchandran
    Singh, Nitin
    Dayama, Pankaj
    Agarwal, Ashutosh
    Pandit, Vinayaka
    [J]. APPLIED INTELLIGENCE, 2022, 52 (02) : 1930 - 1955
  • [42] Uniform Histograms for Change Detection in Multivariate Data
    Boracchi, Giacomo
    Cervellera, Cristiano
    Maccio, Danilo
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 1732 - 1739
  • [43] Change point detection for compositional multivariate data
    Prabuchandran K. J.
    Nitin Singh
    Pankaj Dayama
    Ashutosh Agarwal
    Vinayaka Pandit
    [J]. Applied Intelligence, 2022, 52 : 1930 - 1955
  • [44] Change detection in bi-temporal data by canonical information analysis
    Nielsen, Allan A.
    Vestergaard, Jacob S.
    [J]. 2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,
  • [45] GeoAnalytics -: Exploring spatio-temporal and multivariate data
    Jern, Mikael
    Franzen, Johan
    [J]. INFORMATION VISUALIZATION-BOOK, 2006, : 25 - +
  • [46] A Pattern Mining Approach for Classifying Multivariate Temporal Data
    Batal, Iyad
    Valizadegan, Hamed
    Cooper, Gregory F.
    Hauskrecht, Milos
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM 2011), 2011, : 358 - 365
  • [47] SPATIAL change analysis using temporal remote sensing and ancillary data for desertification change detection
    Waweru, MN
    Jahjah, M
    Laneve, G
    [J]. REMOTE SENSING FOR ENVIRONMENTAL MONITORING, GIS APPLICATIONS, AND GEOLOGY III, 2004, 5239 : 345 - 356
  • [48] Clustering of temporal profiles in US climate change data using logistic mixture of spatial multivariate linear models
    Lee, Seonwoo
    Lee, Keunbaik
    Park, Ju-Hyun
    Kyung, Minjung
    Yun, Seong-Taek
    Lee, Jieun
    Joo, Yongsung
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (09) : 3719 - 3733
  • [49] Multivariate quantiles in hydrological frequency analysis
    Chebana, F.
    Ouarda, T. B. M. J.
    [J]. ENVIRONMETRICS, 2011, 22 (01) : 63 - 78
  • [50] Phenological response to climate change in China: a meta-analysis
    Ge, Quansheng
    Wang, Huanjiong
    Rutishauser, This
    Dai, Junhu
    [J]. GLOBAL CHANGE BIOLOGY, 2015, 21 (01) : 265 - 274