Evaluating CAR-T Cell Therapy in a Hypoxic 3D Tumor Model

被引:81
|
作者
Ando, Yuta [1 ]
Siegler, Elizabeth L. [1 ]
Ta, Hoang P. [1 ]
Cinay, Gunce E. [1 ]
Zhou, Hao [1 ]
Gorrell, Kimberly A. [1 ]
Au, Hannah [2 ]
Jarvis, Bethany M. [1 ]
Wang, Pin [1 ,3 ,4 ,5 ]
Shen, Keyue [1 ,5 ,6 ]
机构
[1] Univ Southern Calif, Dept Biomed Engn, Viterbi Sch Engn, Los Angeles, CA 90089 USA
[2] Univ Calif Berkeley, Dept Immunol & Pathogenesis, Coll Letters & Sci, Berkeley, CA 94720 USA
[3] Univ Southern Calif, Viterbi Sch Engn, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Sch Pharm, Dept Pharmacol & Pharmaceut Sci, Los Angeles, CA 90089 USA
[5] Univ Southern Calif, Keck Sch Med, Norris Comprehens Canc Ctr, Los Angeles, CA 90089 USA
[6] Univ Southern Calif, Keck Sch Med, Dept Stem Cell Biol & Regenerat Med, Los Angeles, CA 90089 USA
关键词
chimeric antigen receptors; hypoxia; immune checkpoints; immunotherapy; ovarian cancer; solid tumors; OVARIAN-CANCER CELLS; GRANZYME-B; SPHEROID MODEL; PHASE-I; IMMUNE; IMMUNOTHERAPY; MICROENVIRONMENT; ACTIVATION; EXPRESSION; ANTIBODY;
D O I
10.1002/adhm.201900001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Despite its revolutionary success in hematological malignancies, chimeric antigen receptor T (CAR-T) cell therapy faces disappointing clinical results in solid tumors. The poor efficacy has been partially attributed to the lack of understanding in how CAR-T cells function in a solid tumor microenvironment. Hypoxia plays a critical role in cancer progression and immune editing, which potentially results in solid tumors escaping immunosurveillance and CAR-T cell-mediated cytotoxicity. Mechanistic studies of CAR-T cell biology in a physiological environment has been limited by the complexity of tumor-immune interactions in clinical and animal models, as well as by a lack of reliable in vitro models. A microdevice platform that recapitulates a 3D tumor section with a gradient of oxygen and integrates fluidic channels surrounding the tumor for CAR-T cell delivery is engineered. The design allows for the evaluation of CAR-T cell cytotoxicity and infiltration in the heterogeneous oxygen landscape of in vivo solid tumors at a previously unachievable scale in vitro.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] CAR-T Cell Therapy for Lymphoma
    Ramos, Carlos A.
    Heslop, Helen E.
    Brenner, Malcolm K.
    ANNUAL REVIEW OF MEDICINE, VOL 67, 2016, 67 : 165 - 183
  • [22] CAR-T Cell Therapy and the Neurointensivist
    Wijdicks, Eelco F. M.
    Rabinstein, Alejandro A.
    Lin, Yi
    NEUROCRITICAL CARE, 2024, : 691 - 694
  • [23] Modulating tumor physical microenvironment for fueling CAR-T cell therapy
    Luo, Zhong
    Yao, Xuemei
    Li, Menghuan
    Fang, De
    Fei, Yang
    Cheng, Zhuo
    Xu, Yingying
    Zhu, Bo
    ADVANCED DRUG DELIVERY REVIEWS, 2022, 185
  • [24] Pseudoprogression in CAR-T cell therapy for solid tumor: Case report
    Zhao, Xuan
    Liu, Yanfen
    Qin, Guohui
    Ge, Yan
    Li, Qinglong
    Chen, Xinfeng
    Tian, Ximei
    Yu, Yong
    Ren, Jiangtao
    Zhang, Yi
    FRONTIERS IN IMMUNOLOGY, 2025, 15
  • [25] Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy
    Kaczanowska, Sabina
    Murty, Tara
    Alimadadi, Ahmad
    Contreras, Cristina F.
    Duault, Caroline
    Subrahmanyam, Priyanka B.
    Reynolds, Warren
    Gutierrez, Norma A.
    Baskar, Reema
    Wu, Catherine J.
    Michor, Franziska
    Altreuter, Jennifer
    Liu, Yang
    Jhaveri, Aashna
    Duong, Vandon
    Anbunathan, Hima
    Ong, Claire
    Zhang, Hua
    Moravec, Radim
    Yu, Joyce
    Biswas, Roshni
    Nostrand, Stephen Van
    Lindsay, James
    Pichavant, Mina
    Sotillo, Elena
    Bernstein, Donna
    Carbonell, Amanda
    Derdak, Joanne
    Klicka-Skeels, Jacquelyn
    Segal, Julia E.
    Dombi, Eva
    Harmon, Stephanie A.
    Turkbey, Baris
    Sahaf, Bita
    Bendall, Sean
    Maecker, Holden
    Highfill, Steven L.
    Stroncek, David
    Glod, John
    Merchant, Melinda
    Hedrick, Catherine C.
    Mackall, Crystal L.
    Ramakrishna, Sneha
    Kaplan, Rosandra N.
    CANCER CELL, 2024, 42 (01) : 35 - 51.e8
  • [26] Tumor buster - where will the CAR-T cell therapy ‘missile’ go?
    Chunrun Qu
    Hao Zhang
    Hui Cao
    Lanhua Tang
    Haoyang Mo
    Fangkun Liu
    Liyang Zhang
    Zhenjie Yi
    Lifu Long
    Luzhe Yan
    Zeyu Wang
    Nan Zhang
    Peng Luo
    Jian Zhang
    Zaoqu Liu
    Weijie Ye
    Zhixiong Liu
    Quan Cheng
    Molecular Cancer, 21
  • [27] 3D Live Imaging and Phenotyping of the Subcellular Cytotoxicity in CAR-T Cell Immunotherapy
    Chen, Liting
    Wang, Zhaofei
    Wang, Jie
    Jin, Jin
    Wei, Jia
    Zhang, Yicheng
    Fei, Peng
    BLOOD, 2024, 144 : 4781 - 4781
  • [28] A 3D VASCULARIZED MICROFLUIDIC MODEL OF THE TUMOUR MICROENVIRONMENT FOR ASSAYING PSC DERIVED CAR-T CELL FUNCTION
    Durland, L.
    Michaels, Y.
    Shelton, S.
    Kamm, R.
    Zandstra, P. W.
    CYTOTHERAPY, 2023, 25 (06) : S220 - S220
  • [29] Heat-inducible CAR-T overcomes adverse mechanical tumor microenvironment in a 3D bioprinted glioblastoma model
    Tang, Min
    Qu, Yunjia
    He, Peixiang
    Yao, Emmie
    Guo, Tianze
    Yu, Di
    Zhang, Nancy
    Kiratitanaporn, Wisarut
    Sun, Yazhi
    Liu, Longwei
    Wang, Yingxiao
    Chen, Shaochen
    MATERIALS TODAY BIO, 2024, 26
  • [30] CAR-T Cell Screening in Tumor Spheroids
    Eto, Kanako
    CANCER SCIENCE, 2018, 109 : 1330 - 1330