Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis

被引:93
|
作者
Pagter, Majken [1 ]
Bragato, Claudia [2 ]
Malagoli, Mario [2 ]
Brix, Hans
机构
[1] Univ Aarhus, Dept Biol Sci, DK-8000 Aarhus C, Denmark
[2] Univ Padua, Dept Agr Biotechnol, I-35020 Legnaro, Italy
关键词
Common reed; Gas exchange; Intrinsic water use efficiency; Mineral composition; Proline; Salt stress; TOLERANT REED PLANTS; SALT TOLERANCE; PHASEOLUS-VULGARIS; NON-HALOPHYTES; GAS-EXCHANGE; STRESS; GROWTH; DROUGHT; CHLORIDE; SODIUM;
D O I
10.1016/j.aquabot.2008.05.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Osmotic and ion-specific effects of NaCl and Na2SO4 on Phragmites australis (Cav.) Trin ex. Steud. were investigated in a laboratory experiment by examining effects of iso-osmotic solutions of NaCl and Na2SO4 on growth, osmolality of cell sap, proline content, elemental composition and gas exchange. Plants were supplied with a control standard nutrient solution (Psi = -0.09 MPa) or solutions of NaCl or Na2SO4 at water potentials of -0.50, -1.09 or -1.74 MPa. Salt treatments increased root concentrations of Na and S or Cl, whereas P. australis had efficient mechanisms for exclusion of Na and S and partly Cl ions from the leaves. Incomplete exclusion of Cl from the leaves may affect aboveground biomass production, which was significantly more reduced by NaCl than Na2SO4. Stomatal conductance was negatively influenced by decreasing water potentials caused by NaCl or Na2SO4, implying that a non-significant photosynthetic depression observed in plants grown at -1.74 MPa was mainly due to osmotically induced stomatal closure. This was supported by decreasing internal CO2 concentrations. Saline conditions increased the intrinsic water use efficiency and did not alter photosynthetic parameters derived from light response curves, supporting the assumption of a well-functioning CO2 utilization in salt stressed plants. The leaf proline concentration increased equally in NaCl and Na2SO4-treated plants, and may play an important role as a compatible organic solute. P. australis possesses a range of mechanisms conferring tolerance to both NaCl and Na2SO4 stress and except in terms of growth the phytotoxicity of NaCl and Na2SO4 are comparable. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [31] Current knowledge about Na2SO4 effects on plants: what is different in comparison to NaCl?
    Reginato, Mariana
    Luna, Virginia
    Papenbrock, Jutta
    JOURNAL OF PLANT RESEARCH, 2021, 134 (06) : 1159 - 1179
  • [32] Current knowledge about Na2SO4 effects on plants: what is different in comparison to NaCl?
    Mariana Reginato
    Virginia Luna
    Jutta Papenbrock
    Journal of Plant Research, 2021, 134 : 1159 - 1179
  • [33] Effects of Seawater, NaCl, and Na2SO4 Solution Mixing on Hydration Process of Cement Paste
    Li, Weiwen
    Jiang, Zhilu
    Lu, Meiyuan
    Long, Wujian
    Xing, Feng
    Liu, Jun
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (05)
  • [34] Assessing the effects of Na2SO4 and NaCl on the properties of geopolymer concrete subjected to elevated temperatures
    Yazici, Nisa
    Karagol, Fatma
    STRUCTURAL CONCRETE, 2024, 25 (05) : 3841 - 3865
  • [35] EFFECTS OF NA2SO4 AND NACL ON ACTIVITY OF PHOTOSYNTHETIC PHOSPHORYLATION IN PLANTS WITH DIFFERENT SALT RESISTANCE
    LAPINA, LP
    BIKMUKHAMETOVA, SA
    MURASHOV, IN
    SOVIET PLANT PHYSIOLOGY, 1976, 23 (02): : 236 - 241
  • [36] Effects of salinity and cutting on the development of Phragmites australis
    Asaeda, Takashi
    Manatunge, Jagath
    Fujino, Takeshi
    Sovira, Dessy
    WETLANDS ECOLOGY AND MANAGEMENT, 2003, 11 (03) : 127 - 140
  • [37] Phase Equilibrium in NaCl–NaBr–Na2CO3 and NaCl–NaBr–Na2SO4 Systems
    A. A. Finogenov
    I. K. Garkushin
    E. I. Frolov
    Glass Physics and Chemistry, 2022, 48 : 630 - 635
  • [38] Effect of NaCl and Na2SO4 on osmotic potential, water relations and ions changes of Alhagi persarum L.
    Amiri, Bahram
    Rasouli, Behrouz
    Assareh, Mohammad H.
    Jafari, Mohammad
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2011, 9 (02): : 253 - 256
  • [39] Effects of salinity and cutting on the development of Phragmites australis
    Takashi Asaeda
    Jagath Manatunge
    Takeshi Fujino
    Dessy Sovira
    Wetlands Ecology and Management, 2003, 11 : 127 - 140
  • [40] THE EFFECTS OF SALINITY AND FLOODING ON PHRAGMITES-AUSTRALIS
    HELLINGS, SE
    GALLAGHER, JL
    JOURNAL OF APPLIED ECOLOGY, 1992, 29 (01) : 41 - 49