Enumeration of RNA complexes via random matrix theory

被引:9
|
作者
Andersen, Jorgen E. [1 ]
Chekhov, Leonid O. [2 ,3 ]
Penner, Robert C. [1 ,4 ]
Reidys, Christian M. [5 ]
Sulkowski, Piotr [4 ,6 ,7 ]
机构
[1] Aarhus Univ, Ctr Quantum Geometry Moduli Spaces, DK-8000 Aarhus C, Denmark
[2] VA Steklov Math Inst, Dept Theoret Phys, Moscow 119991, Russia
[3] Univ Loughborough, Sch Math, Loughborough LE11 3TU, Leics, England
[4] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[5] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
[6] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[7] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
基金
新加坡国家研究基金会;
关键词
free energy; Hermitian matrix model; random matrix theory; RNA complex;
D O I
10.1042/BST20120270
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present article, we review a derivation of the numbers of RNA complexes of an arbitrary topology. These numbers are encoded in the free energy of the Hermitian matrix model with potential V(x)=x(2)/2 - stx/(1 - tx), where s and t are respective generating parameters for the number of RNA molecules and hydrogen bonds in a given complex. The free energies of this matrix model are computed using the so-called topological recursion, which is a powerful new formalism arising from random matrix theory. These numbers of RNA complexes also have profound meaning in mathematics: they provide the number of chord diagrams of fixed genus with specified numbers of backbones and chords as well as the number of cells in Riemann's moduli spaces for bordered surfaces of fixed topological type.
引用
收藏
页码:652 / 655
页数:4
相关论文
共 50 条
  • [31] Staggered chiral random matrix theory
    Osborn, James C.
    PHYSICAL REVIEW D, 2011, 83 (03):
  • [32] Logarithmic universality in random matrix theory
    Splittorff, K
    NUCLEAR PHYSICS B, 1999, 548 (1-3) : 613 - 625
  • [33] Raney Distributions and Random Matrix Theory
    Forrester, Peter J.
    Liu, Dang-Zheng
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) : 1051 - 1082
  • [34] Quantum fluctuations and random matrix theory
    Duras, MM
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 456 - 459
  • [35] Dynamical approach to random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [36] Random Matrix Theory in Cd isotopes
    Majarshin, A. J.
    Luo, Yan-An
    Pan, Feng
    Draayer, Jerry P.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (10)
  • [37] Tensor product random matrix theory
    Altland, Alexander
    de Miranda, Joaquim Telles
    Micklitz, Tobias
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [38] Random matrix theory and the Anderson model
    Bellissard, J
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 739 - 754
  • [39] Centrality of the collision and random matrix theory
    Z.Wazir
    中国物理C, 2010, 34 (10) : 1593 - 1597
  • [40] Raney Distributions and Random Matrix Theory
    Peter J. Forrester
    Dang-Zheng Liu
    Journal of Statistical Physics, 2015, 158 : 1051 - 1082