Enumeration of RNA complexes via random matrix theory

被引:9
|
作者
Andersen, Jorgen E. [1 ]
Chekhov, Leonid O. [2 ,3 ]
Penner, Robert C. [1 ,4 ]
Reidys, Christian M. [5 ]
Sulkowski, Piotr [4 ,6 ,7 ]
机构
[1] Aarhus Univ, Ctr Quantum Geometry Moduli Spaces, DK-8000 Aarhus C, Denmark
[2] VA Steklov Math Inst, Dept Theoret Phys, Moscow 119991, Russia
[3] Univ Loughborough, Sch Math, Loughborough LE11 3TU, Leics, England
[4] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[5] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
[6] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[7] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
基金
新加坡国家研究基金会;
关键词
free energy; Hermitian matrix model; random matrix theory; RNA complex;
D O I
10.1042/BST20120270
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present article, we review a derivation of the numbers of RNA complexes of an arbitrary topology. These numbers are encoded in the free energy of the Hermitian matrix model with potential V(x)=x(2)/2 - stx/(1 - tx), where s and t are respective generating parameters for the number of RNA molecules and hydrogen bonds in a given complex. The free energies of this matrix model are computed using the so-called topological recursion, which is a powerful new formalism arising from random matrix theory. These numbers of RNA complexes also have profound meaning in mathematics: they provide the number of chord diagrams of fixed genus with specified numbers of backbones and chords as well as the number of cells in Riemann's moduli spaces for bordered surfaces of fixed topological type.
引用
收藏
页码:652 / 655
页数:4
相关论文
共 50 条
  • [1] Random matrix theory and RNA folding
    Zee, A
    ACTA PHYSICA POLONICA B, 2005, 36 (09): : 2829 - 2836
  • [2] Source Enumeration with Random Matrix Theory in the Low SNR Regime
    Chen, Huayang
    Bai, Yechao
    Zhang, Xinggan
    Wang, Qiong
    Tang, Lan
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2017, VOL I, 2017, : 448 - 452
  • [3] Study of RNA structures with a connection to random matrix theory
    Bhadola, Pradeep
    Deo, Nivedita
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 542 - 550
  • [4] Enumeration of RNA structures by matrix models
    Vernizzi, G
    Orland, H
    Zee, A
    PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [5] Test Set Sizing via Random Matrix Theory
    Dubbs A.
    Operations Research Forum, 5 (1)
  • [6] Detecting Changes in Covariance via Random Matrix Theory
    Ryan, Sean
    Killick, Rebecca
    TECHNOMETRICS, 2023, 65 (04) : 480 - 491
  • [7] Spectrum Sensing Algorithms via Finite Random Matrix Theory
    de Abreu, Giuseppe Thadeu Freitas
    Zhang, Wensheng
    Sanada, Yukitoshi
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [8] Source Enumeration via Toeplitz Matrix Completion
    Garg, Vaibhav
    Gimenez-Febrer, Pere
    Pages-Zamora, Alba
    Santamaria, Ignacio
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6004 - 6008
  • [9] Uncovering functional signature in neural systems via random matrix theory
    Almog, Assaf
    Buijink, M. Renate
    Roethler, Ori
    Michel, Stephan
    Meijer, Johanna H.
    Rohling, Jos H. T.
    Garlaschelli, Diego
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (05)
  • [10] Analysis of aeroplane boarding via spacetime geometry and random matrix theory
    Bachmat, E.
    Berend, D.
    Sapir, L.
    Skiena, S.
    Stolyarov, N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (29): : L453 - L459