Mechanical behaviors of a novel auxetic honeycomb characterized by re-entrant combined-wall hierarchical substructures

被引:12
|
作者
Zhou, Yang [1 ]
Pan, Yi [1 ]
Chen, Lin [1 ]
Gao, Qiang [1 ]
Sun, Beibei [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
基金
美国国家科学基金会;
关键词
metamaterial; auxetic honeycomb; negative Poisson's ratio; hierarchical; stress enhancement; NEGATIVE-POISSONS-RATIO; DESIGN; HOMOGENIZATION; STIFFNESS; SHAPE;
D O I
10.1088/2053-1591/ac9d83
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current focus of the metamaterials is to further improve their performance by the unit cell innovation, while for the auxetic metamaterials, the compromise between the mechanical properties and auxetic effect still needs more efforts. Given this issue, here we developed a novel auxetic honeycomb, named re-entrant combined-wall (RCW) honeycomb, by introducing four hierarchical substructures to the RE cell. Analytical expressions were derived and used to study the in-plane elastic constants of the RCW honeycomb, which were well confirmed by the established finite element model. Further, we investigated its crushing behaviors under large deformation by the explicit numerical method, and the quasi-static crushing experiments were also carried out by the 3D-printed specimens. Results show that the properties of the proposed RCW honeycomb have a high degree of orthogonality and tunability. Compared with the traditional RE honeycomb, the Young's modulus of the RCW honeycomb in the y direction increases by more than 120%, and the Poisson's ratio decreases by about 43%. Besides, behaviors of the cell wall contact induced by the adding substructure can lead to an interesting stress enhancement phenomenon under large deformation, which significantly increases its crushing strength, up to 140%, compared with the RE honeycomb. Therefore, the results in this work effectively demonstrate the improved mechanical properties and auxetic performance of the proposed RCW honeycomb. Besides, the adopted design strategy of hierarchical substructure also exhibits great potential for developing novel and excellent auxetic mechanical metamaterials.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Shape Morphing of Re-Entrant Honeycomb Metamaterials for Linear Auxetic Behaviors
    Choi, Hong-Gap
    Pyo, Soonjae
    Choi, Jae-Won
    Park, Keun
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (01)
  • [2] A novel elliptical annular re-entrant auxetic honeycomb with enhanced stiffness
    Zhu, Difeng
    Wei, Yuchen
    Shen, Xingyu
    Yan, Ke
    Yuan, Mengqi
    Qi, Shaobo
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 262
  • [3] Analysis of Mechanical Properties and Parameter Dependency of Novel, Doubly Re-Entrant Auxetic Honeycomb Structures
    Szeles, Levente
    Horvath, Richard
    Cveticanin, Livia
    POLYMERS, 2024, 16 (17)
  • [4] Fatigue Life of Auxetic Re-entrant Honeycomb Structure
    Michalski, Jakub
    Strek, Tomasz
    ADVANCES IN MANUFACTURING II, VOL 4 - MECHANICAL ENGINEERING, 2019, : 50 - 60
  • [5] Study on the Bending Behaviors of a Novel Flexible Re-Entrant Honeycomb
    Zhou, Yang
    Pan, Yi
    Chen, Lin
    Gao, Qiang
    Sun, Beibei
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (04):
  • [6] The compressive responses and failure behaviors of composite graded auxetic re-entrant honeycomb structure
    Yu, Sheng
    Liu, Zhikang
    Cao, Xiaoming
    Liu, Jiayi
    Huang, Wei
    Wang, Yangwei
    THIN-WALLED STRUCTURES, 2023, 187
  • [7] A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance
    Wang, Huan
    Lu, Zixing
    Yang, Zhenyu
    Li, Xiang
    COMPOSITE STRUCTURES, 2019, 208 : 758 - 770
  • [8] Impact Response of Re-Entrant Hierarchical Honeycomb
    Lian, Jinming
    Wang, Zhenqing
    MATERIALS, 2023, 16 (22)
  • [9] In-plane elasticity of a multi re-entrant auxetic honeycomb
    Harkati, E.
    Daoudi, N.
    Bezazi, A.
    Haddad, A.
    Scarpa, F.
    COMPOSITE STRUCTURES, 2017, 180 : 130 - 139
  • [10] Application of Re-Entrant Honeycomb Auxetic Structure in Force Measurements
    Li, Pengju
    Zhang, Xilin
    Zhang, Zhengkai
    Wen, Qingguo
    IEEE SENSORS JOURNAL, 2021, 21 (21) : 24202 - 24208