The compressive responses and failure behaviors of composite graded auxetic re-entrant honeycomb structure

被引:37
|
作者
Yu, Sheng [1 ]
Liu, Zhikang [1 ]
Cao, Xiaoming [3 ]
Liu, Jiayi [1 ,2 ]
Huang, Wei [1 ]
Wang, Yangwei [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan, Peoples R China
[2] Hubei Key Lab Naval Architecture & Ocean Engn Hydr, Wuhan 430074, Peoples R China
[3] Wuhan Second Ship Design & Res Inst, Wuhan 430064, Peoples R China
[4] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
关键词
Re-entrant honeycomb core; Quasi-static compression; Energy absorption; Negative Poisson?s ratio effect;
D O I
10.1016/j.tws.2023.110721
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigated the quasi-static compressive performances and failure behaviors of composite auxetic re-entrant honeycomb sandwich structure. Three types of auxetic re-entrant honeycomb structures with different gradient configurations were manufactured and tested. The carbon/epoxy prepreg was used to fabricated the auxetic re-entrant honeycomb sandwich structure. The reaction force and displacement of the test fixture were collected by the transducer of the universal testing machine. The compressive processes of specimens were recorded by high-resolution camera. Combined with the stress-strain curves and deformation processes of composite structures, the compressive responses and deformation mechanisms was analyzed. The Poisson's ratio, energy efficiency and plateau stress of re-entrant honeycomb sandwich structures were defined and utilized to study the auxetic performance and energy absorption ability. Furthermore, a high-fidelity numerical model was established and finite element software ABAQUS was used to analyzed the compressive performances and failure behaviors of composite graded auxetic re-entrant honeycomb structure. The compressive failure modes of the numerical simulation results were compared with that of the experimental results, and the numerical simulation results agreed well with the experimental results. The results indicated that average structure exhibited best energy absorption performance and bidirectionally graded auxetic honeycomb structure had the best negative Poisson's ratio performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Compressive and flexural responses of auxetic sandwich panels with modified re-entrant honeycomb cores
    Mohammadpour, Mojtaba
    Taheri-Behrooz, Fathollah
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2024, 26 (07) : 1165 - 1181
  • [2] Fatigue Life of Auxetic Re-entrant Honeycomb Structure
    Michalski, Jakub
    Strek, Tomasz
    ADVANCES IN MANUFACTURING II, VOL 4 - MECHANICAL ENGINEERING, 2019, : 50 - 60
  • [3] Fabrication and crushing response of graded re-entrant circular auxetic honeycomb
    Jiang, Feng
    Yang, Shu
    Zhang, Yu
    Qi, Chang
    Chen, Shang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 242
  • [4] Shape Morphing of Re-Entrant Honeycomb Metamaterials for Linear Auxetic Behaviors
    Choi, Hong-Gap
    Pyo, Soonjae
    Choi, Jae-Won
    Park, Keun
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (01)
  • [5] Application of Re-Entrant Honeycomb Auxetic Structure in Force Measurements
    Li, Pengju
    Zhang, Xilin
    Zhang, Zhengkai
    Wen, Qingguo
    IEEE SENSORS JOURNAL, 2021, 21 (21) : 24202 - 24208
  • [6] Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties
    Mustahsan, Farrukh
    Khan, Sohaib Z.
    Zaidi, Asad A.
    Alahmadi, Yaser H.
    Mahmoud, Essam R., I
    Almohamadi, Hamad
    MATERIALS, 2022, 15 (22)
  • [7] The dynamic response of composite auxetic re-entrant honeycomb structure subjected to underwater impulsive loading
    Liu, Zhikang
    Luo, Xilin
    He, Xiaolong
    Liu, Jiayi
    Yu, Sheng
    Huang, Wei
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2024, 191
  • [8] Design and compressive behaviors of the gradient re-entrant origami honeycomb metamaterials
    Ma, Nanfang
    Han, Sihao
    Han, Qiang
    Li, Chunlei
    THIN-WALLED STRUCTURES, 2024, 198
  • [9] The fluid-structure interaction response of composite auxetic re-entrant honeycomb structures to underwater impact
    Liu, Jiayi
    He, Xiaolong
    Liu, Zhikang
    Cao, Xiaoming
    Yu, Sheng
    Huang, Wei
    THIN-WALLED STRUCTURES, 2024, 196
  • [10] Dynamic crushing responses of enhanced auxetic re-entrant honeycomb based on additive manufacturing
    Li, Chunjie
    Zhou, Qi
    Li, He
    Wang, Rui
    STRUCTURES, 2024, 69