Compressive and flexural responses of auxetic sandwich panels with modified re-entrant honeycomb cores

被引:4
|
作者
Mohammadpour, Mojtaba [1 ]
Taheri-Behrooz, Fathollah [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Mech Engn, Tehran 1684613144, Iran
关键词
Additive manufacturing; sandwich panel; auxetic honeycomb core; compression test; bending test; FEA analysis; BEHAVIOR; FAILURE; DESIGN; MODEL;
D O I
10.1177/10996362241275532
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Auxetic structures possess negative Poisson's ratio (NPR). They exhibit enhanced indentation resistance, synclastic deformation, high fracture toughness and high energy absorption. Several sorts of auxetic structures exist, such as re-entrant, arrowhead, chiral, etc. The re-entrant structure is the most common sort of auxetic structures. This paper investigates the mechanical behavior of the re-entrant auxetic structure using experimental and numerical methods. Two modified re-entrant topologies are proposed based on the original (conventional) re-entrant topology. Using these modified topologies, two re-entrant auxetic sandwich structures are designed and 3D printed using fused deposition modeling (FDM) out of polylactic acid (PLA). Conducting compression, three and four-point bending tests, the compressive and flexural performance of the two new re-entrant auxetic sandwich structures is studied and compared with the original (conventional) re-entrant structure. More specifically, Poisson's ratio, compressive modulus, flexural stiffness and maximum loads of the structures are focused and studied. The mechanical properties of auxetic sandwich structures are improved using modified topologies. The new re-entrant auxetic sandwich structures show 11% higher normalized compressive modulus and 9% higher normalized flexural stiffness than the original re-entrant structure.
引用
收藏
页码:1165 / 1181
页数:17
相关论文
共 50 条
  • [1] The compressive responses and failure behaviors of composite graded auxetic re-entrant honeycomb structure
    Yu, Sheng
    Liu, Zhikang
    Cao, Xiaoming
    Liu, Jiayi
    Huang, Wei
    Wang, Yangwei
    THIN-WALLED STRUCTURES, 2023, 187
  • [2] Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels
    Kalubadanage, Dulara
    Remennikov, Alex
    Ngo, Tuan
    Qi, Chang
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2021, 23 (08) : 4016 - 4053
  • [3] Paper tube-guided blast response of sandwich panels with auxetic re-entrant and regular hexagonal honeycomb cores - An experimental study
    Chen, Ganchao
    Zhang, Pan
    Deng, Naiqi
    Cai, Sipei
    Cheng, Yuansheng
    Liu, Jun
    ENGINEERING STRUCTURES, 2022, 253
  • [4] Effect of fillers on compression loading performance of modified re-entrant honeycomb auxetic sandwich structures
    Faisal, Nadimul Haque
    Scott, Lindsay
    Booth, Findlay
    Duncan, Scott
    McLeod, Abbi
    Droubi, Mohamad Ghazi
    Njuguna, James
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2023, 58 (02): : 98 - 117
  • [5] Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores
    Zied, Khaled
    Osman, Mohamed
    Elmahdy, Tarek
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (12): : 2685 - 2692
  • [6] High velocity impact damage assessment of sandwich panels with auxetic re-entrant and TPMS based cellular cores
    Mahapatra, I.
    Velmurugan, R.
    Jayaganthan, R.
    PROCEEDINGS OF ASME 2023 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2023, 2023,
  • [7] Fatigue Life of Auxetic Re-entrant Honeycomb Structure
    Michalski, Jakub
    Strek, Tomasz
    ADVANCES IN MANUFACTURING II, VOL 4 - MECHANICAL ENGINEERING, 2019, : 50 - 60
  • [8] Flexural behaviors of asymmetric Re-entrant auxetic honeycombs
    Bahmanpour, Ehsan
    Montazeri, Amin
    Saeedi, Amirhossein
    Mahnama, Maryam
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2025, 109
  • [9] Static and modal analysis of sandwich panels with rib-reinforced re-entrant honeycomb
    Xinyi, Lai
    Yifeng, Zhong
    Rong, Liu
    Yilin, Zhu
    Evrard, Irakoze Alain
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 275
  • [10] Dynamic crushing responses of enhanced auxetic re-entrant honeycomb based on additive manufacturing
    Li, Chunjie
    Zhou, Qi
    Li, He
    Wang, Rui
    STRUCTURES, 2024, 69