Structure and dynamics of stereo-regular poly(methyl-methacrylate) melts through atomistic molecular dynamics simulations

被引:22
|
作者
Behbahani, Alireza F. [1 ,2 ]
Allaei, S. Mehdi Vaez [3 ]
Motlagh, Ghodratollah H. [1 ]
Eslami, Hossein [4 ]
Harmandaris, Vagelis A. [5 ,6 ]
机构
[1] Univ Tehran, Sch Chem Engn, Coll Engn, Adv Polymer Mat & Proc Lab, Tehran 111554563, Iran
[2] Inst Res Fundamental Sci IPM, Sch Phys, Tehran 193955531, Iran
[3] Univ Tehran, Dept Phys, Tehran 14395547, Iran
[4] Persian Gulf Univ, Dept Chem, Coll Sci, Boushehr 75168, Iran
[5] Univ Crete, Dept Math & Appl Math, GR-71110 Iraklion, Greece
[6] Fdn Res & Technol Hellas, Inst Appl & Computat Math, GR-71110 Iraklion, Greece
关键词
SYNDIOTACTIC POLY(METHYL METHACRYLATE); GLASS-TRANSITION TEMPERATURE; MEAN-SQUARE RADIUS; OLIGO(METHYL METHACRYLATE)S; FUNCTIONALIZED GRAPHENE; BETA-RELAXATION; LOCAL-STRUCTURE; TACTICITY; WEIGHT; PARAMETERS;
D O I
10.1039/c7sm02008b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(methyl-methacrylate), PMMA, is a disubstituted vinyl polymer whose properties depend significantly on its tacticity. Here we present a detailed study of the structure, conformation, and dynamics of syndiotactic, atactic, and isotactic PMMA melts at various temperatures (580, 550, 520, and 490 K) via all-atom molecular dynamics simulations. The calculated volumetric properties are close to experimental data. The T-g and chain dimensions of PMMA model systems are found to depend strongly on tacticity in agreement with experimental findings. The backbone bonds in trans (t), diads in tt, and inter-diads in t vertical bar t torsional states are the most populated for all PMMA stereo-chemistries and their fractions increase with the number of syndiotactic sequences. Also, the effective torsional barrier heights for the backbone, ester side group, and alpha-methyl group are larger for syndiotactic PMMA compared to the isotactic one. The structure of the PMMA chains is studied by computing the intra- and inter-chain static structure factors, S(q), and the radial pair distribution functions. In the first peak of S(q), both intra- and inter-chain components contribute, whereas the second and third peaks mainly come from inter- and intra-chain parts, respectively. For all PMMA stereo-isomers a clear tendency of ester-methyl groups to aggregate is observed. The local dynamics are studied by analyzing torsional autocorrelation functions for various dihedral angles. A wide spectrum of correlation times and different activation energies are observed for the motions of different parts of PMMA chains. The stereo-chemistry affects the backbone, ester side group, and alpha-methyl motions, whereas the ester-methyl rotation remains unaffected. The dynamic heterogeneity of the PMMA chains is also studied in detail for the different stereo-chemistries via the temperature dependence of the stretching exponent. Furthermore, the reorientational dynamics at the chain level and translational dynamics for monomer and chain centers-of-mass are analyzed.
引用
收藏
页码:1449 / 1464
页数:16
相关论文
共 50 条
  • [31] Network structure and methanol transport dynamics in poly(methyl methacrylate)
    Ekenseair, Adam K.
    Peppas, Nicholas A.
    AICHE JOURNAL, 2012, 58 (05) : 1600 - 1609
  • [32] Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations
    Arbe, Arantxa
    Alvarez, Fernando
    Colmenero, Juan
    POLYMERS, 2020, 12 (12) : 1 - 30
  • [33] Polymerization molecular dynamics simulations. I. Cross-linked atomistic models for poly(methacrylate) networks
    Doherty, DC
    Holmes, BN
    Leung, P
    Ross, RB
    COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 1998, 8 (1-2): : 169 - 178
  • [34] Molecular Dynamics and Structure of Poly(Methyl Methacrylate) Chains Grafted from Barium Titanate Nanoparticles
    Wypych-Puszkarz, Aleksandra
    Cetinkaya, Onur
    Yan, Jiajun
    Udovytska, Ruslana
    Jung, Jaroslaw
    Jenczyk, Jacek
    Nowaczyk, Grzegorz
    Jurga, Stefan
    Ulanski, Jacek
    Matyjaszewski, Krzysztof
    Pietrasik, Joanna
    Kozanecki, Marcin
    MOLECULES, 2022, 27 (19):
  • [35] Modelling of novel polymer materials through atomistic molecular dynamics simulations
    Bacova, Petra
    Rissanou, Anastassia N.
    Harmandaris, Vagelis
    7TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE ON COMPUTATIONAL SCIENCE, YSC2018, 2018, 136 : 341 - 350
  • [36] Structure Of Biomolecules Through Molecular Dynamics Simulations
    Arnittali, Maria
    Rissanou, Anastassia N.
    Harmandaris, Vagelis
    8TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE ON COMPUTATIONAL SCIENCE, YSC2019, 2019, 156 : 69 - 78
  • [37] Molecular Dynamics of Poly(methyl methacrylate) Determined by Dielectric Relaxation Spectroscopy
    Seki, Yuki
    Kita, Rio
    Shinyashiki, Naoki
    Yagihara, Shin
    Yoneyama, Masaru
    4TH INTERNATIONAL SYMPOSIUM ON SLOW DYNAMICS IN COMPLEX SYSTEMS: KEEP GOING TOHOKU, 2013, 1518 : 466 - 469
  • [38] Molecular dynamics of poly(methyl methacrylate) single-chain nanoparticles
    Liu, Jiankang
    Lv, Zhijian
    Fang, Yini
    Wu, Guozhang
    Lin, Yu
    POLYMER, 2023, 284
  • [39] Molecular dynamics simulation of polystyrene-block-poly(methyl methacrylate)
    Lu, ZY
    Li, ZS
    Huang, XR
    Jiang, BZ
    Sun, JZ
    MACROMOLECULAR THEORY AND SIMULATIONS, 1998, 7 (06) : 619 - 622
  • [40] Dynamics of various polymer-graphene interfacial systems through atomistic molecular dynamics simulations
    Rissanou, Anastassia N.
    Harmandaris, Vagelis
    SOFT MATTER, 2014, 10 (16) : 2876 - 2888