Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment

被引:97
|
作者
Nancharaiah, Yarlagadda, V [1 ,2 ]
Sarvajith, Manjunath [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Biofouling & Biofilm Proc Sect, Water & Steam Chem Div, Kalpakkam 603102, Tamil Nadu, India
[2] Homi Bhabha Natl Inst, BARC Training Sch Complex, Mumbai 400094, Maharashtra, India
关键词
Aerobic granulation; Alginate-like exopolymer; Municipal wastewater treatment; Nitrogen removal; Phosphorus removal;
D O I
10.1016/j.coesh.2019.09.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerobic granular sludge (AGS) was developed as a better replacement for activated sludge (AS) and overcoming sludge-water separation issues in the biological treatment of municipal and industrial wastewaters. AGS consists of dense self-immobilized microbial granules that have compact microbial structure, high biopolymer content and higher settling velocities. Granular microbial growth allows effective biomasswater separation, higher biomass concentrations in the bioreactor and simultaneous nitrification, denitrification and phosphate removal from wastewater in a single treatment tank. In this way, AGS process minimizes the land footprint (50%-75% lower) and energy (30%-48% lower) of wastewater treatment plants (WWTPs) as compared to conventional AS process. In the last 20 years, AGS process has grown into a mature biotechnological solution from laboratory-scale to full-scale WWTPs. The other benefits of AGS process are lower sludge production and resource utility of excess sludge. Prevailing microbial groups and their unique metabolism contributes to lower sludge production in AGS process. Extraction of alginate-like exopolymer increases the resource recovery and aid in the sludge management. However, the long start-up periods for AGS formation and disintegration of AGS are seen as constraints for widespread implementation of AGS technology. Extensive research in this area already identified key operational parameters and strategies for improved start-up of granulation. The bioreactor operating conditions such as anaerobic feeding, feast-famine regime and short settling periods impose selection of slow-growing bacteria with unique metabolic traits and favour granulation. Anaerobic feeding and sludge removal strategies are important in maintaining the stability of granules. Further studies on molecular aspects of granulation would be crucial for widespread implementation of this emerging technology in WWTPs.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [31] Aerobic granular sludge technology and nitrogen removal for domestic wastewater treatment
    Wagner, J.
    Guimaraes, L. B.
    Akaboci, T. R. V.
    Costa, R. H. R.
    WATER SCIENCE AND TECHNOLOGY, 2015, 71 (07) : 1040 - 1046
  • [32] Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment
    Gao, Dawen
    Liu, Lin
    Liang, Hong
    Wu, Wei-Min
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2011, 31 (02) : 137 - 152
  • [33] Continuous-Flow Aerobic Granular Sludge Treatment of Dairy Wastewater
    Silva, Joao F.
    Silva, Joao R.
    Santos, Andreia D. D.
    Vicente, Carolina
    Dries, Jan
    Castro, Luis M. M.
    WATER, 2023, 15 (06)
  • [34] Evaluating the effect of antibiotics on aerobic granular sludge treatment of pharmaceutical wastewater
    Cao, Zhenghao
    Sai, Anning
    Jia, Xiangxiang
    Zhang, Xiaoyu
    WATER SCIENCE AND TECHNOLOGY, 2024, 90 (04) : 1280 - 1289
  • [35] Aerobic granular sludge technology in domestic wastewater treatment: opportunities and challenges
    de Souza Rollemberg, Silvio Luiz
    de Oliveira, Lorayne Queiroz
    Milen Firmino, Paulo Igor
    dos Santos, Andre Bezerra
    ENGENHARIA SANITARIA E AMBIENTAL, 2020, 25 (03) : 439 - 449
  • [36] Effective aerobic granular sludge treatment of a real dyeing textile wastewater
    Lotito, Adriana Maria
    Fratino, Umberto
    Mancini, Annalisa
    Bergna, Giovanni
    Di Iaconi, Claudio
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2012, 69 : 62 - 68
  • [37] Development of aerobic granular sludge for real industrial/municipal wastewater treatment
    Sanchez-Sanchez, Celina
    Moreno-Rodriguez, Ernestina
    Ortiz-Cruz, J. Alejandro
    Moeller-Chavez, Gabriela Eleonora
    WATER SCIENCE AND TECHNOLOGY, 2023, 87 (09) : 2328 - 2344
  • [38] Aerobic granular sludge systems: The new generation of wastewater treatment technologies
    Di Iaconi, C.
    Ramadori, R.
    Lopez, A.
    Passino, R.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (21) : 6661 - 6665
  • [39] Research advance in aerobic sludge granulation for wastewater biological treatment
    Zhu, Liang
    Xu, Xiang-Yang
    Luo, Wei-Guo
    Zha, Yu-Ming
    Huanjing Kexue/Environmental Science, 2007, 28 (11): : 2657 - 2664
  • [40] Assessment of Microalgal-Bacterial Granular Sludge Process for Environmentally Sustainable Municipal Wastewater Treatment
    Ji, Bin
    Liu, Yu
    ACS ES&T WATER, 2021, 1 (12): : 2459 - 2469