On the new variable shape parameter strategies for radial basis functions

被引:41
|
作者
Golbabai, Ahmad [1 ]
Mohebianfar, Ehsan [1 ]
Rabiei, Hamed [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2015年 / 34卷 / 02期
关键词
Meshless method; Radial basis function; Constant shape parameter strategies; Variable shape parameter strategies; SCATTERED DATA INTERPOLATION; DATA APPROXIMATION SCHEME; NEURAL-NETWORK; ERROR ESTIMATE; MULTIQUADRICS; COLLOCATION;
D O I
10.1007/s40314-014-0132-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most popular meshless methods is constructed by radial kernels as basis called radial basis function method. It has a unique feature which affects significantly on accuracy and stability of approximation: existence of a free parameter known as shape parameter that can be chosen constantly or variably. Several techniques for selecting a variable shape parameter have been presented in the older works. Our study focuses on investigating the deficiency of these techniques and we introduce two new alternative strategies called hybrid shape parameter and binary shape parameter strategies based on the advantages of older studies. The proposed approaches produce the more accurate results as shown in numerical results where they are compared with random shape parameter strategy for interpolating one-dimensional and two- dimensional functions as well as in approximating the solution of Poisson equation.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 50 条
  • [41] New Approach for Radial Basis Function Based on Partition of Unity of Taylor Series Expansion with Respect to Shape Parameter
    Bawazeer, Saleh A.
    Baakeem, Saleh S.
    Mohamad, Abdulmajeed A.
    ALGORITHMS, 2021, 14 (01) : 1 - 18
  • [42] Optimal control of a parabolic distributed parameter system via radial basis functions
    Rad, J. A.
    Kazem, S.
    Parand, K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2559 - 2567
  • [43] A time-efficient variable shape parameter Kansa-radial basis function method for the solution of nonlinear boundary value problems
    Karageorghis, Andreas
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 413
  • [44] Simultaneous optimization of shape parameters and weight factors in ensemble of radial basis functions
    Erdem Acar
    Structural and Multidisciplinary Optimization, 2014, 49 : 969 - 978
  • [45] Simultaneous optimization of shape parameters and weight factors in ensemble of radial basis functions
    Acar, Erdem
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 49 (06) : 969 - 978
  • [46] Parametric Shape and Topology Optimization with Radial Basis Functions and Partition of Unity Method
    Ho, Hon Shan
    Lui, Bonnie
    Xing, X. H.
    Wang, Michael Yu
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 276 - 281
  • [47] Modification of the Class-Shape-Transformation Parameterization Based on Radial Basis Functions
    Du, Bingchen
    Lu, Zhiliang
    Guo, Tongqing
    Zhou, Di
    Li, Qiaozhong
    JOURNAL OF AIRCRAFT, 2024, 61 (02): : 451 - 469
  • [48] On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere
    Fornberg, Bengt
    Piret, Cecile
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (05) : 2758 - 2780
  • [49] On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs
    Huang, C. -S.
    Yen, H. -D.
    Cheng, A. H. -D.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2010, 34 (09) : 802 - 809
  • [50] Robustness of radial basis functions
    Eickhoff, R
    Rückert, U
    COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 264 - 271