Tuning the Hardness of Produced Parts by Adjusting the Cooling Rate during Laser-Based Powder Bed Fusion of AlSi10Mg by Adapting the Process Parameters

被引:3
|
作者
Leis, Artur [1 ,2 ]
Traunecker, David [1 ]
Weber, Rudolf [1 ]
Graf, Thomas [1 ]
机构
[1] Inst Strahlwerkzeuge IFSW, Pfaffenwaldring 43, D-70569 Stuttgart, Germany
[2] Grad Sch Excellence Adv Mfg Engn GSaME, Nobelstr 12, D-70569 Stuttgart, Germany
关键词
LPBF; additive manufacturing; hardness; mechanical properties; AlSi10Mg; HALL-PETCH RELATIONSHIP; ALLOY; FINE;
D O I
10.3390/met12122000
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical properties of parts produced by laser-based powder bed fusion (LPBF) are mainly determined by the grain structure in the material, which is governed by the cooling rate during solidification. This cooling rate strongly depends on the scan velocity and the absorbed laser power. Experiments with varying process parameters were performed to develop and validate an analytical model that predicts the hardness of printed AlSi10Mg parts. It was found that it is possible to tune the hardness of additively manufactured parts of AlSi10Mg in a range between 60 +/- 9 HV0.5 and 100 +/- 10 HV0.5 by adjusting the cooling rate during solidification with adapted process parameters.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Strength-hardness relationship for AlSi10Mg alloy produced by laser powder bed fusion: An experimental study
    Serjouei, A.
    Libura, T.
    Brodecki, A.
    Radziejewska, J.
    Broniszewska, P.
    Pawlowski, P.
    Szymczak, T.
    Bodaghi, M.
    Kowalewski, Z.L.
    Materials Science and Engineering: A, 2022, 861
  • [22] Strength-hardness relationship for AlSi10Mg alloy produced by laser powder bed fusion: An experimental study
    Serjouei, A.
    Libura, T.
    Brodecki, A.
    Radziejewska, J.
    Broniszewska, P.
    Pawlowski, P.
    Szymczak, T.
    Bodaghi, M.
    Kowalewski, Z. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
  • [23] Research on Surface Roughness of AlSi10Mg Parts Fabricated by Laser Powder Bed Fusion
    Li, Bao-Qiang
    Li, Zhonghua
    Bai, Peikang
    Liu, Bin
    Kuai, Zezhou
    METALS, 2018, 8 (07):
  • [24] Gold plating of AlSi10Mg parts produced by a laser powder-bed fusion additive manufacturing technique
    Inberg, Alexandra
    Ashkenazi, Dana
    Kimmel, Giora
    Shacham-Diamand, Yosi
    Stern, Adin
    PROGRESS IN ADDITIVE MANUFACTURING, 2020, 5 (04) : 395 - 404
  • [25] Gold plating of AlSi10Mg parts produced by a laser powder-bed fusion additive manufacturing technique
    Alexandra Inberg
    Dana Ashkenazi
    Giora Kimmel
    Yosi Shacham-Diamand
    Adin Stern
    Progress in Additive Manufacturing, 2020, 5 : 395 - 404
  • [26] Hierarchical Analysis of Phase Constituent and Mechanical Properties of AlSi10Mg/SiC Composite Produced by Laser-Based Powder Bed Fusion
    Yanase, Yuta
    Miyauchi, Hajime
    Matsumoto, Hiroaki
    Yokota, Kozo
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2024, 88 (09) : 153 - 162
  • [27] Fatigue Improvement of AlSi10Mg Fabricated by Laser-Based Powder Bed Fusion through Heat Treatment
    Sajadi, Felix
    Tiemann, Jan-Marc
    Bandari, Nooshin
    Darabi, Ali Cheloee
    Mola, Javad
    Schmauder, Siegfried
    METALS, 2021, 11 (05)
  • [28] Hierarchical Analysis of Phase Constituent and Mechanical Properties of AlSi10Mg/ SiC Composite Produced by Laser-Based Powder Bed Fusion
    Yanase, Yuta
    Miyauchi, Hajime
    Matsumoto, Hiroaki
    Yokota, Kozo
    MATERIALS TRANSACTIONS, 2023, 64 (06) : 1125 - 1134
  • [29] Corrosion in laser powder bed fusion AlSi10Mg alloy
    Laieghi, Hossein
    Kvvssn, Varma
    Butt, Muhammad Muteeb
    Ansari, Peyman
    Salamci, Metin U.
    Patterson, Albert E.
    Salamci, Elmas
    ENGINEERING REPORTS, 2024, 6 (10)
  • [30] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Hyer, Holden
    Zhou, Le
    Park, Sharon
    Gottsfritz, Guilherme
    Benson, George
    Tolentino, Bjorn
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2020, 9 (04) : 484 - 502