ROUGH PATH ANALYSIS VIA FRACTIONAL CALCULUS

被引:0
|
作者
Hu, Yaozhong [1 ]
Nualart, David [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Rough path; fractional calculus; integral; integration by parts; differential equation; stability; stochastic differential equation; Wong-Zakai approximation; convergence rate; DIFFERENTIAL-EQUATIONS DRIVEN; STOCHASTIC-ANALYSIS; LARGE DEVIATIONS; SUPPORT THEOREM; INTEGRATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using fractional calculus we define integrals of the form integral(b)(a)f(x(t))dy(t), where x and y are vector-valued Holder continuous functions of order beta is an element of (1/3, 1/2) and f is a continuously differentiable function such that f' is lambda-Holder continuous for some lambda > 1/beta - 2. Under some further smooth conditions on f the integral is a continuous functional of x, y, and the tensor product x circle times y with respect to the Holder norms. We derive some estimates for these integrals and we solve differential equations driven by the function y. We discuss some applications to stochastic integrals and stochastic differential equations.
引用
收藏
页码:2689 / 2718
页数:30
相关论文
共 50 条
  • [21] A Renormalized Rough Path over Fractional Brownian Motion
    Unterberger, Jeremie
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (03) : 603 - 636
  • [22] STOCHASTIC CALCULUS FOR FRACTIONAL BROWNIAN MOTION WITH HURST EXPONENT H > 1/4: A ROUGH PATH METHOD BY ANALYTIC EXTENSION
    Unterberger, Jeremie
    [J]. ANNALS OF PROBABILITY, 2009, 37 (02): : 565 - 614
  • [23] Integral inequalities via fractional quantum calculus
    Weerawat Sudsutad
    Sotiris K Ntouyas
    Jessada Tariboon
    [J]. Journal of Inequalities and Applications, 2016
  • [24] COMBINATORIAL IDENTITIES GENERALIZED VIA FRACTIONAL CALCULUS
    OSLER, TJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A510 - A510
  • [25] Integral inequalities via fractional quantum calculus
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 15
  • [26] Quantization of nonlocal fields via fractional calculus
    Atman, Kazim Gokhan
    Sirin, Huseyin
    [J]. PHYSICA SCRIPTA, 2022, 97 (06)
  • [27] Nonlinear Young Integrals via Fractional Calculus
    Hu, Yaozhong
    Le, Khoa N.
    [J]. STOCHASTICS OF ENVIRONMENTAL AND FINANCIAL ECONOMICS, 2016, 138 : 81 - 99
  • [28] MATHEMATICAL MODELING AND STABILITY ANALYSIS OF THE DYNAMICS OF MONKEYPOX VIA FRACTIONAL-CALCULUS
    Alharbi, Rabab
    Jan, Rashid
    Alyobi, Sultan
    Altayeb, Yousif
    Khan, Ziad
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [29] Stability analysis and numerical simulations via fractional calculus for tumor dormancy models
    Silva, Jairo G.
    Ribeiro, Aiara C. O.
    Camargo, Rubens F.
    Mancera, Paulo F. A.
    Santos, Fernando L. P.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 528 - 543
  • [30] Rough path analysis: An introduction
    Aida, Shigeki
    [J]. PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 1 - 28