Controlling localized spatiotemporal chaos in a one-dimensional coupled map lattice

被引:14
|
作者
Parmananda, P
Jiang, Y
机构
[1] Facultad de Ciencias, UAEM, Cuernavaca, Morelos, Av. Universidad 1001, Col. Chamilpa
关键词
D O I
10.1016/S0375-9601(97)00289-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Suppression of the localized spatiotemporal chaos observed in the one-dimensional coupled map lattice system of Kaneko [Physica D 37 (1989) 60] is achieved using feedback control. The control is successful both for the frozen random patterns (the chaotic domains are fixed in space) and for the chaotic defect moving around in space. The control algorithm is completely automated and is only implemented on lattice sites where the local dynamics is determined to be chaotic via evaluation of the local Lyapunov exponent. This could have possible relevance to situations where localized turbulence results in degradation of the system performance. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:159 / 163
页数:5
相关论文
共 50 条
  • [21] Controlling spatiotemporal chaos in coupled map lattices to periodic orbits
    Zhu, KE
    Chen, TL
    Bian, GX
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (05) : 527 - 532
  • [22] Cardiac reentry modeled by spatiotemporal chaos in a coupled map lattice
    Stenzinger, R., V
    Tragtenberg, M. H. R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (05): : 847 - 858
  • [23] Cardiac reentry modeled by spatiotemporal chaos in a coupled map lattice
    R. V. Stenzinger
    M. H. R. Tragtenberg
    The European Physical Journal Special Topics, 2022, 231 : 847 - 858
  • [24] Effect of noise on chaos in a one-dimensional map
    Yoshimoto, M
    Kurosawa, S
    Nagashima, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) : 1924 - 1929
  • [25] Oscillations and spatiotemporal chaos of one-dimensional fluid fronts
    Vallette, DP
    Jacobs, G
    Gollub, JP
    PHYSICAL REVIEW E, 1997, 55 (04): : 4274 - 4287
  • [26] Fuzzy transition region in a one-dimensional coupled-stable-map lattice
    Cecconi, F
    Livi, R
    Politi, A
    PHYSICAL REVIEW E, 1998, 57 (03): : 2703 - 2712
  • [27] PROPAGATION OF A LOCALIZED IMPULSE ON A ONE-DIMENSIONAL LATTICE
    MERCHANT, DL
    BRILL, OL
    AMERICAN JOURNAL OF PHYSICS, 1973, 41 (01) : 55 - 59
  • [28] Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice
    Zhang Ying-Qian
    He Yi
    Wang Xing-Yuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 148 - 160
  • [29] Controlling one-dimensional Langevin dynamics on the lattice
    Bettencourt, LMA
    Habib, S
    Lythe, G
    PHYSICAL REVIEW D, 1999, 60 (10)
  • [30] Li–Yorke chaos on one-dimensional map lattices
    Lili Wei
    Chenxing Zhou
    Advances in Difference Equations, 2019