Stabilization for Euler-Bernoulli Beam Equation with Boundary Moment Control and Disturbance via a New Disturbance Estimator

被引:7
|
作者
Zhou, Hua-Cheng [1 ]
Feng, Hongyinping [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410075, Peoples R China
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Disturbance rejection; Output feedback; Exponential stabilization; Euler-Bernoulli beam equation; OUTPUT-FEEDBACK STABILIZATION; MULTIDIMENSIONAL WAVE-EQUATION; ACTIVE DISTURBANCE; EXPONENTIAL STABILIZATION; REJECTION CONTROL;
D O I
10.1007/s10883-020-09492-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the output feedback stabilization for a Euler-Bernoulli beam equation with boundary moment control and disturbance. The stabilization of this system has been studied in Guo et al. (J Dyn Control Syst.2014;20:539-58), where the controller is based on full state feedback. In order to derive the output feedback controller, we design a new disturbance estimator to estimate the total disturbance in the sense that the estimation error signal belongs L-2(0,infinity), and it decays exponentially if the initial state is smooth. Using the estimated total disturbance, we propose a control law to stabilize the system. Using admissibility theory, we show that the closed-loop system is exponentially stable and the signals in the disturbance estimator in the closed-loop are proved to be bounded.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 50 条
  • [31] Artificial boundary conditions for Euler-Bernoulli beam equation
    Shao-Qiang Tang
    Eduard G. Karpov
    Acta Mechanica Sinica, 2014, 30 : 687 - 692
  • [32] Output feedback stabilization of Euler-Bernoulli beam equation with general corrupted boundary observation
    Fan, Xueru
    Kou, Chunhai
    APPLICABLE ANALYSIS, 2023, 102 (10) : 2755 - 2773
  • [33] Adaptive Distributed Boundary Vibration Control of Multiagent Euler-Bernoulli Beams via Cooperative Disturbance Observer Network
    Zhao, Zhibo
    Yuan, Yuan
    Xiao, Yu
    Luo, Biao
    Xu, Xiaodong
    Gui, Weihua
    Yang, Chunhua
    Huang, Tingwen
    IEEE SYSTEMS JOURNAL, 2024, 18 (01): : 568 - 579
  • [34] Stabilization of a nonlinear Euler-Bernoulli beam
    Benterki, Djamila
    Tatar, Nasser-Eddine
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 479 - 496
  • [35] Output feedback control for an uncertain Euler-Bernoulli beam equation with boundary disturbances
    Ma G.-Y.
    Jiang Q.
    Zong X.-J.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2023, 40 (08): : 1369 - 1376
  • [36] Stabilization of an Euler-Bernoulli beam system with a tip mass subject to non-uniform bounded disturbance
    Li, Yanfang
    Xu, Genqi
    Han, Zhongjie
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (04) : 1239 - 1254
  • [37] A MEMORY TYPE BOUNDARY STABILIZATION FOR AN EULER-BERNOULLI BEAM UNDER BOUNDARY OUTPUT FEEDBACK CONTROL
    Kang, Yong Han
    Park, Jong Yeoul
    Kim, Jung Ae
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (05) : 947 - 964
  • [39] BOUNDARY AND DISTRIBUTED CONTROL FOR A NONLINEAR THREE-DIMENSIONAL EULER-BERNOULLI BEAM BASED ON INFINITE DIMENSIONAL DISTURBANCE OBSERVER
    Jiang, Tingting
    Liu, Jinkun
    He, Wei
    ASIAN JOURNAL OF CONTROL, 2016, 18 (06) : 2047 - 2063
  • [40] Fractional integrodifferential boundary control of the Euler-Bernoulli beam
    Montseny, G
    Audounet, J
    Matignon, D
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 4973 - 4978