Constructing Graph Node Embeddings via Discrimination of Similarity Distributions

被引:1
|
作者
Tsepa, Stanislav [1 ]
Panov, Maxim [2 ]
机构
[1] RAS, Skolkovo Inst Sci & Technol Skoltech, Moscow Inst Phys & Technol, Inst Informat Transmiss Problems, Moscow, Russia
[2] RAS, Skolkovo Inst Sci & Technol Skoltech, Inst Informat Transmiss Problems, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Graph node embeddings; representation learning; Wasserstein distance; unsupervised learning; link prediction;
D O I
10.1109/ICDMW.2018.00152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of unsupervised learning node embeddings in graphs is one of the important directions in modern network science. In this work we propose a novel framework, which is aimed to find embeddings by discriminating distributions of similarities (DDoS) between nodes in the graph. The general idea is implemented by maximizing the earth mover distance between distributions of decoded similarities of similar and dissimilar nodes. The resulting algorithm generates embeddings which give a state-of-the-art performance in the problem of link prediction in real-world graphs.
引用
收藏
页码:1050 / 1053
页数:4
相关论文
共 50 条
  • [31] EmbedJoin: Efficient Edit Similarity Joins via Embeddings
    Zhang, Haoyu
    Zhang, Qin
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 585 - 594
  • [32] Managing Big Data by Directed Graph Node Similarity
    Pap, Endre
    Jocic, Marko
    Szakal, Aniko
    Obradovic, Djordje
    Konjovic, Zora
    2016 17TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI 2016), 2016, : 25 - 29
  • [33] Learning Structural Node Embeddings via Diffusion Wavelets
    Donnat, Claire
    Zitnik, Marinka
    Hallac, David
    Leskovec, Jure
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1320 - 1329
  • [34] Enhancing Graph Data Quality by Leveraging Heterogeneous Node Features and Embeddings
    Angonese, Silvio Fernando
    Galante, Renata
    INTELLIGENT SYSTEMS, BRACIS 2024, PT I, 2025, 15412 : 383 - 398
  • [35] Learning from Conditional Distributions via Dual Embeddings
    Dai, Bo
    He, Niao
    Pan, Yunpeng
    Boots, Byron
    Song, Le
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 1458 - 1467
  • [36] Knowledge Graph Embeddings with node2vec for Item Recommendation
    Palumbo, Enrico
    Rizzo, Giuseppe
    Troncy, Raphael
    Baralis, Elena
    Osella, Michele
    Ferro, Enrico
    SEMANTIC WEB: ESWC 2018 SATELLITE EVENTS, 2018, 11155 : 117 - 120
  • [37] LONE SAMPLER : Graph Node Embeddings by Coordinated Local Neighborhood Sampling
    Kutzkov, Konstantin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 8413 - 8420
  • [38] Streaming Graph Embeddings via Incremental Neighborhood Sketching
    Yang, Dingqi
    Qu, Bingqing
    Yang, Jie
    Wang, Liang
    Cudre-Mauroux, Philippe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5296 - 5310
  • [39] Scalable Graph Embeddings via Sparse Transpose Proximities
    Yin, Yuan
    Wei, Zhewei
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1429 - 1437
  • [40] A Provable Framework of Learning Graph Embeddings via Summarization
    Zhou, Houquan
    Liu, Shenghua
    Koutra, Danai
    Shen, Huawei
    Cheng, Xueqi
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4946 - 4953