Constructing Graph Node Embeddings via Discrimination of Similarity Distributions

被引:1
|
作者
Tsepa, Stanislav [1 ]
Panov, Maxim [2 ]
机构
[1] RAS, Skolkovo Inst Sci & Technol Skoltech, Moscow Inst Phys & Technol, Inst Informat Transmiss Problems, Moscow, Russia
[2] RAS, Skolkovo Inst Sci & Technol Skoltech, Inst Informat Transmiss Problems, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Graph node embeddings; representation learning; Wasserstein distance; unsupervised learning; link prediction;
D O I
10.1109/ICDMW.2018.00152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of unsupervised learning node embeddings in graphs is one of the important directions in modern network science. In this work we propose a novel framework, which is aimed to find embeddings by discriminating distributions of similarities (DDoS) between nodes in the graph. The general idea is implemented by maximizing the earth mover distance between distributions of decoded similarities of similar and dissimilar nodes. The resulting algorithm generates embeddings which give a state-of-the-art performance in the problem of link prediction in real-world graphs.
引用
收藏
页码:1050 / 1053
页数:4
相关论文
共 50 条
  • [1] Matching Node Embeddings for Graph Similarity
    Nikolentzos, Giannis
    Meladianos, Polykarpos
    Vazirgiannis, Michalis
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2429 - 2435
  • [2] Interpretable Graph Similarity Computation via Differentiable Optimal Alignment of Node Embeddings
    Doan, Khoa D.
    Manchanda, Saurav
    Mahapatra, Suchismit
    Reddy, Chandan K.
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 665 - 674
  • [3] Adversarial Attacks on Node Embeddings via Graph Poisoning
    Bojchevski, Aleksandar
    Guennemann, Stephan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Constructing Node Embeddings for Human Phenotype Ontology to Assist Phenotypic Similarity Measurement
    Shen, Feichen
    Liu, Sijia
    Wang, Yanshan
    Wang, Liwei
    Wen, Andrew
    Limper, Andrew H.
    Liu, Hongfang
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS WORKSHOPS (ICHI-W), 2018, : 29 - 33
  • [5] Watch Your Step: Learning Node Embeddings via Graph Attention
    Abu-El-Haija, Sami
    Perozzi, Bryan
    Al-Rfou, Rami
    Alemi, Alex
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Graph attention network via node similarity for link prediction
    Yang, Kai
    Liu, Yuan
    Zhao, Zijuan
    Zhou, Xingxing
    Ding, Peijin
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (03):
  • [7] Graph attention network via node similarity for link prediction
    Kai Yang
    Yuan Liu
    Zijuan Zhao
    Xingxing Zhou
    Peijin Ding
    The European Physical Journal B, 2023, 96
  • [8] Node similarity in the citation graph
    Wangzhong Lu
    J. Janssen
    E. Milios
    N. Japkowicz
    Yongzheng Zhang
    Knowledge and Information Systems, 2007, 11 : 105 - 129
  • [9] Node similarity in the citation graph
    Lu, Wangzhong
    Janssen, J.
    Milios, E.
    Japkowicz, N.
    Zhang, Yongzheng
    KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 11 (01) : 105 - 129
  • [10] Patient Similarity via Joint Embeddings of Medical Knowledge Graph and Medical Entity Descriptions
    Lin, Zhihuang
    Yang, Dan
    Yin, Xiaochun
    IEEE ACCESS, 2020, 8 : 156663 - 156676