Video Instance Segmentation 2019: A winning approach for combined Detection, Segmentation, Classification and Tracking

被引:11
|
作者
Luiten, Jonathon [1 ,2 ]
Torr, Philip H. S. [2 ]
Leibe, Bastian [1 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Univ Oxford, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/ICCVW.2019.00088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video Instance Segmentation (VIS) is the task of localizing all objects in a video, segmenting them, tracking them throughout the video and classifying them into a set of pre-defined classes. In this work, divide VIS into these four parts: detection, segmentation, tracking and. classification. We then develop algorithms for petforming each of these four sub tasks individually, and combine these into a complete solution for VIS. Our solution is an adaptation of Un-OVOST, the current best petforming algorithm for Unsupervised Video Object Segmentation, to this VIS task. We benchmark our algorithm on the 2019 YouTube-VIS Challenge, where we obtain first place with an mAP score of 46.7%.
引用
收藏
页码:709 / 712
页数:4
相关论文
共 50 条
  • [21] A deep learning approach for insulator instance segmentation and defect detection
    Antwi-Bekoe, Eldad
    Liu, Guisong
    Ainam, Jean-Paul
    Sun, Guolin
    Xie, Xiurui
    Neural Computing and Applications, 2022, 34 (09) : 7253 - 7269
  • [22] Dual Embedding Learning for Video Instance Segmentation
    Feng, Qianyu
    Yang, Zongxin
    Li, Peike
    Wei, Yunchao
    Yang, Yi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 717 - 720
  • [23] In Defense of Online Models for Video Instance Segmentation
    Wu, Junfeng
    Liu, Qihao
    Jiang, Yi
    Bai, Song
    Yuille, Alan
    Bai, Xiang
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 588 - 605
  • [24] InstanceFormer: An Online Video Instance Segmentation Framework
    Koner, Rajat
    Hannan, Tanveer
    Shit, Suprosanna
    Sharifzadeh, Sahand
    Schubert, Matthias
    Seidl, Thomas
    Tresp, Volker
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1188 - 1195
  • [25] Mask-Free Video Instance Segmentation
    Ke, Lei
    Danelljan, Martin
    Ding, Henghui
    Tai, Yu-Wing
    Tang, Chi-Keung
    Yu, Fisher
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22857 - 22866
  • [26] Learning Hierarchical Embeddings for Video Instance Segmentation
    Qin, Zheyun
    Lu, Xiankai
    Nie, Xiushan
    Zhen, Xiantong
    Yin, Yilong
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1884 - 1892
  • [27] Video Instance Segmentation in an Open-World
    Thawakar, Omkar
    Narayan, Sanath
    Cholakkal, Hisham
    Anwer, Rao Muhammad
    Khan, Salman
    Laaksonen, Jorma
    Shah, Mubarak
    Khan, Fahad Shahbaz
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, : 398 - 409
  • [28] SeqFormer: Sequential Transformer for Video Instance Segmentation
    Wu, Junfeng
    Jiang, Yi
    Bai, Song
    Zhang, Wenqing
    Bai, Xiang
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 553 - 569
  • [29] MaskRNN: Instance Level Video Object Segmentation
    Hu, Yuan-Ting
    Huang, Jia-Bin
    Schwing, Alexander G.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [30] InstanceFormer: An Online Video Instance Segmentation Framework
    Ludwig Maximilian University of Munich, Germany
    不详
    arXiv, 1600,