Weyl's theorem for the square of operator and perturbations

被引:4
|
作者
Shi, Weijuan [1 ]
Cao, Xiaohong [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
基金
美国国家科学基金会;
关键词
Weyl's theorem; spectrum; stability; COMPACT; SPECTRUM;
D O I
10.1142/S0219199714500424
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T is an element of B(H) satisfies Weyl's theorem if sigma(T)\sigma(w)(T) = pi(00)(T), where sigma(T) and sigma(w)(T) denote the spectrum and the Weyl spectrum of T, respectively, pi(00)(T) = {lambda is an element of iso sigma(T) : 0 < dim N(T - lambda I) < infinity}. T is an element of B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K is an element of B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T-2.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] New approach to a-Weyl's theorem through localized SVEP and Riesz-type perturbations
    Ben Ouidren, Kaoutar
    Zariouh, Hassan
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (17): : 3231 - 3247
  • [42] A Note on the Browder's and Weyl's Theorem
    M.AMOUCH
    H.ZGUITTI
    Acta Mathematica Sinica,English Series, 2008, (12) : 2015 - 2020
  • [43] A Note on the Browder's and Weyl's Theorem
    Amouch, M.
    Zguitti, H.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (12) : 2015 - 2020
  • [44] A Note on the Browder’s and Weyl’s theorem
    M. Amouch
    H. Zguitti
    Acta Mathematica Sinica, English Series, 2008, 24
  • [45] Perturbations in Muntz's theorem
    Spalsbury, Angela
    JOURNAL OF APPROXIMATION THEORY, 2008, 150 (01) : 48 - 68
  • [46] Polaroid operators and Weyl's theorem
    Duggal, B
    Harte, R
    Jeon, IH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1345 - 1349
  • [47] Weyl's theorem for tensor products
    Song, YM
    Kim, AH
    GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 301 - 304
  • [48] a-Weyl's theorem and hypercyclicity
    Liu, Ying
    Cao, Xiaohong
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01): : 107 - 125
  • [49] ON WEYL'S THEOREM FOR TENSOR PRODUCTS
    Kubrusly, C. S.
    Duggal, B. P.
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (01) : 139 - 144
  • [50] On Weyl's Theorem for Functions of Operators
    Jiong DONG
    Xiao Hong CAO
    Lei DAI
    Acta Mathematica Sinica,English Series, 2019, (08) : 1367 - 1376